
Converting Diagram to a Timeline Ontology
Nikolay Voit

Ulyanovsk State Technical University
Russia, Ulyanovsk
+7(8422)77-88-33

n.voit@ulstu.ru

Sergey Kirillov
Ulyanovsk State Technical University

Russia, Ulyanovsk
+7(8422)77-88-33

kirillovsyu@gmail.com

Semen Bochkov
Ulyanovsk State Technical University

Russia, Ulyanovsk
+7(8422)77-88-33

bochkovsi@ido.ulstu.ru

ABSTRACT

CAD systems design and development is not a simple process. It

consists of large amount of works, most of them are
interconnected and should be performed either simultaneously or
sequentially, some of them depend on success of previous works
etc. Design workflows allow to describe works in visual form and
calculate their quantitative and qualitative parameters. They
significantly increase the design process efficiency and the
product quality due to the usage of participants interaction

language unification. However, modern workflow management

tools lack of some important functions especially in part of
temporal analysis and ontology-based timeline diagrams.

In this paper, we describe the novel method to convert any
diagram to a timeline structure like an ontology. The method
includes converting algorithm and allows engineers to get the
issue of workflows in which they are involved thus giving them a

help to design complex CAD systems. It is shown that any
diagram describing complex system behavior may be converted

into simple view as a timeline ontology. An illustrated example is
given in the article.

CCS Concepts

• Software and its engineering➝Software notations and

tools➝Context specific languages➝Visual languages

• Theory of computation➝Design and analysis of

algorithms➝Graph algorithms analysis➝Dynamic graph

algorithms

Keywords

analysis; workflows; business process; computer-aided design.

1. INTRODUCTION
Automated systems are defined in GOST R 34.601-90 as an
organizational and technical system that provides solutions based
on automation of information processes in various fields of
activity (management, design, production, etc.) or their
combinations, as well as in the international standard IEEE 1471
as complex systems that use software intensively. In the business

process management theory, theoretical computer science, and
design automation theory, the stages of creating such systems are

represented by design workflows (by designers who use software
(computer) development tools intensively). The processing of
such workflows (business processes) in the end-to-end digital

design paradigm contains key design procedures: analysis and
synthesis, which are among the latest research areas and
significantly affect the result and success of the design. At the
same time, the problem of the project solutions success in these
theories has been dealt with for more than 30 years, such attention

to the problem is caused by a high degree of output of
development (project solutions) beyond the planned time,
financial and functional parameters. The existing theory identifies

the reasons and makes recommendations for improving the
success of designing complex automated systems. however,
according to the Standish Group international company, which is
engaged in research on the success of automated systems

development, currently only 40% of developments are completed
successfully.

2. RELATED WORK
In modern graphic visual languages theory representing
workflows, a logical model (behavioral model) is used [1, 2],
which contains graphical objects and links between them. The
following graphic languages are widely used in large enterprises:

UML [3], BPMN [4], AMBER [5], IDEF [6, 7], eEPC [7, 8], and
PERT [9]. In [5], the AMBER language is described, which has a
simple data structure (there are no arrays, records, and classes), so

it is not possible to implement complex business process
structures on IT. The structural approach is embedded in the IDEF
methodology [6] and has been developed in the UML, BPMN,
eEPC languages and the specialized language Pilot Workflow
ASCON (Russian developer of work flow management systems,

ASCON firm [8, 10]) in terms of inheriting the object-oriented
paradigm and introducing the concept of "time" into the diagram
of workflow models [11]. However, in the most common tools for

creating and processing diagram models, such as Microsoft Visio
[12], Visual paradigm UML Tool [13], Aris Toolset [14], IBM
Rational Software Architect (RSA) [15], pilot Workflow ASCON,
the analysis of diagram models is performed using direct methods,
requiring several "passes" depending on the type of error being

controlled, there is no analysis of the structural features of
complex diagram models and operational semantic analysis of
attached software modules of diagram models of dynamic

workflows. In particular, the workflow model designing tools at
the Ulyanovsk mechanical plant JSC use specialized software,
Workflow Designer, which is a component of the project
management system developed by the RC ASKON-Volga, which

has the following problems:

1. In terms of editing workflows.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions

from Permissions@acm.org.

ICCTA 2020, April 14–16, 2020, Antalya, Turkey

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7749-2/20/04…$15.00

https://doi.org/10.1145/3397125.3397151

80

* removing unnecessary business process blocks (tasks and
procedures). The function not implemented in Workflow
Designer. It is implemented by creating a new version of the
business process procedure (function), which starts new
workflows, and the old ones continue to run in the old version of

the business process procedure (function). To solve this problem,

it is necessary to analyze the running workflows for the possibility
of transferring them to a new version of the procedure (function)
of the business process. Completed tasks are usually not changed.

* adding new context variables for tasks and procedures. In
Workflow Designer, adding new variables is only possible if a
new version of the business process procedure (function) is
created, with all the consequences described above.

* deleting context variables for tasks and procedures.
Variables are defined at the start level of the workflow, so
deleting variables is difficult. If the information entered earlier is
not currently necessary, then deleting it should not cause any
difficulties.

* it is almost impossible to add or remove predefined
(constant) variables that operate at the level of the entire business

process. In this case, it is suggested to create a new version of the

business process itself, with restarting all static (constantly
running) tasks.

2. Lack of functionality in Workflow Designer for analyzing
the integrity of the business process for the presence of freezes,
loops, and finiteness.

At the moment, there is a large amount of grammars designed or
adapted for analyzing and controlling the flow patterns of visual
languages [16, 17]. The most well-known are Web grammar [18],

Positional grammar [11], Relational grammar, multi-level graph
grammar [19], and preserving graph grammar [20]. Positional
grammars are the simplest. Developing on the basis of Plex
structures [18], they inherited their shortcomings. These
grammars do not involve the use of join regions. They cannot be

used for graphical languages whose graphical objects have a
dynamic variable number of inputs/outputs. they cannot be used to
control the syntax of graphical languages that contain parallelism.
The advantage of relational grammars is that they can handle

errors, but they do not have a mechanism for neutralizing such
errors. Multi-level and persistent graph grammars can provide
analysis of graphical languages with a "deep" context dependency,
which is necessary in languages that allow to specify the

synchronization of performed actions. Examples of such
languages are the ones of process graph diagrams and message
Sequence Charts. Common disadvantages of the above grammars
are the following.

1.Increasing the number of productions when constructing a
grammar for unstructured graphic languages, i.e. if the number of
primitives of a graphic language is constant, there is a significant

increase in the number of productions, since it is necessary to
determine all possible variants of unstructured language.

2.The complexity of constructing a grammar (increasing the
complexity of products and their number), and for some
formalisms, the impossibility of constructing a grammar, for

graph schemes with unstructured parallelism.

3.Large time complexity. Analyzers built on the basis of the

considered grammars offer polynomial or exponential time for
analyzing graphical languages diagrams.

In [21, 22], a syntactically-oriented approach based on a family of
RV-grammars is proposed for processing visual languages.
However, there are no mechanisms for analyzing and synthesizing
structural and semantic features of diagrams in terms of their
integrity and consistency between themselves and the conceptual

model, including text attributes. The problem of error

neutralization and its solution is well reflected in classical works
on compilers, for example, [23]. A method of error neutralization
for RV-grammars is also proposed [24]. However, the issues of
neutralization for diagrammatic models of dynamic distributed
workflows are not resolved in them. Translation of visual
language models into another target language based on RV-
grammars is solved in [25]. However, the task of translating

several interrelated diagrammatic models of workflows presented

in different languages is not considered in the target language.
Temporal automatic RVTI-grammar [26] considers the
timestamps of diagrammatic models of workflows, and not the
events of business processes, so it does not take into account the
facts of work performed in the analysis.

With the development of software, maintenance becomes the most
expensive component of software system development. Studies by

Myers, Linz, Swanson, and Shah have shown that from 1/2 to 2/3
of the costs over the life of a software system are spent on
maintenance [27]. The maintenance stage also accounts for the
highest costs associated with correcting detected errors [28].
Weinberg's analysis of the most expensive errors in the history of
programming showed that the worst three were caused by
changing exactly one line of code that was not tested after the
change was made. Regression testing is the most important stage

of software verification, aimed at rechecking the correctness of
the modified program, creating assurance that the modified
system meets the requirements [29, 30]. The analysis of works
devoted to regression testing has shown that the main direction of
research is the formation of an optimal tests set to confirm the
program's performance, while solving the problems of minimizing
test sets, determining priorities and selecting tests [31, 32]. There

are several approaches to solving these problems.

* McCarthy's approach. Changes are analyzed at the level of

the entire module. The link between program elements and tests is
set manually by the developer.

* The Rothermel and Harrold approach [33], and the Ball
approach [34]. Changes are analyzed at the node level of the
program's control flow graph. The relationship of program

elements to tests is based on dynamic information about the
execution of each test.

• AST-based approach. The analysis of changes takes place

at the level of the vertices of the abstract syntax tree (AST) of the
program. The Association of program elements with tests is set at
the AST level based on dynamic information about the execution
of each test.

* Approach based on the firewall concept [35]. Changes are
analyzed at the level of entire modules. The Association of
program elements with tests is not taken into account.

However, existing regression testing approaches do not take

into account the specifics of business processes in the system flow
control works large industrial enterprises (for example, network
coordination documentation, coordination of changes of design

and technological documentation, changes in the structure and the
list of performers and others), so do not allow you to

81

automatically check the implementation of business processes,
their compliance with the existing spec flow control works.

3. METHOD TO CONVERT A DIAGRAM

INTO A TIMELINE ONTOLOGY
The diagram is the input data for the method. It can be developed

in any graphical language and in any design tool. As a rule, such
diagrams are presented in an XML description and are

materialized in files [36-40]. Below the algorithm for converting a
diagram into a timeline ontology is shown.

1. Delete vertices without external links.

2. Hide verbs that do not contain verbs (see Fig. 1).

a. To the top of the unparsed.

b. Check whether the vertex is an action, if so, before moving
to the next vertex.

c. Get an unanalyzed incoming edge.

d. If there are none, go to step j.

e. Get the initial vertex for this edge.

f. Get an unanalyzed outgoing edge.

g. If there are no such edges, delete the outgoing edge and go
to step c.

h. Adding a link between the initial vertex of the incoming
edge and the final vertex of the outgoing edge.

i. Go to step f.

j. Delete all outgoing edges.

k. Delete the vertex.

3.Calculate the minimum number of steps to each vertex of
the diagram.

4.Display vertices on the timeline according to the minimum
number of steps to reach them.

The example diagram of technological processes in project
management is shown in Fig. 2.

After deleting vertices without links the diagram will be set

as shown in Fig. 3.

Next, vertices without actions (e.g. input and output data),
edges without vertices and undirected edges are removed. The
result can be seen in Fig. 4.

For each process step a minimum reaching time in units from
the initial vertices is calculated. Corresponding values are

appended to the diagram (Fig. 5).

Fig. 6 shows the final timeline ontology.

1 1

1

 Action 1 Action 2

Action 3 Action 4
Figure 1. Example of hiding vertex 1.

82

Kompas-3D

Altium

Designer
Kompas-3D

Altium Designer

E3

Project management system

Tasks and

control deadlines issuance

Technical

task (TT)

developm

ent

Tasks and

control deadlines issuance

TT

Tasks and

control deadlines issuance

Technical

requirements

DD

Requirements

determination

Draft design
(DD)

development
Scheduling

Analogues

search

Schedule

Coordination

Approval

Technical

documentatio

n department

accounting

Design

Engineering
calculations

ECD

Tasks and

control deadlines issuance

Approval procedure,

timing control

Tasks and

control deadlines

issuance

Loodsman

PLM

Loodsman

Archive

Tasks and

control deadlines

issuance

Engineering
calculations

Kompas-3D

Altium Designer

Ansys

MathLab

Calculations

Model

Parameters

Kompas-3D

Altium Designer

Ansys

MathLab

Calculations

Workflow

Ontology

formation

Model
Analysis

Data

Project solutions
ontological base

Data

PLM system

Figure 2. Project management system.

Kompas-3D

Altium Designer

Data

PLM

Kompas-3D
Altium Designer

E3

Data

Project solutions

ontological base

Project Management System

Technical

Task (TT)

Developme

nt

TT
Project

Technical
Requirements

DD

Require

ments

Determi

nation

Draft Design

(DD)

Development
Scheduling

Analogues

Search

Schedule

Coordinatied

Approval

Technical

Documentation

Department

accounting

Design

Engineering

calculations

ECD

Loodsman
PLMEngineering

calculations

Kompas-3D
Altium Designer

Ansys

MathLab

Calculations

Kompas-3D
Altium Designer

Ansys

MathLab

Schedule

Workflow

Figure 3. Deleting vertices without links.

83

TT

Development

Requirements

Determination

DD

Development
Scheduling

Analogues

Search

Coordinated

Approval

Technical

Documentation

Department

accounting

Designing

Figure 4. Hiding vertices without actions, edges without vertices, and undirected edges.

0 1 2

0

1 1
2 3

TT

Development

Requirements

Determination

DD

Development
Scheduling

Analogues

Search

Coordinated

Approval

Technical

Documentation

Department

accounting

Designing

Figure 5. Calculation of the minimum number of steps from the initial vertices.

1 2 3 4

Requirements

Determination

Analogues

Search

TT

Development

Designing

DD Development

Coordinated

Approval

Technical

Documentation

Department

accounting

Scheduling

Figure 6. Building a timeline ontology.

4. CONCLUSION
A method for automated synthesis of the timeline ontology from
diagram is presented. Diagrams are workflows in the basis of

graphic languages in computer-aided systems (CAD). This
method automates the production of an ontological model and
presents the denotative semantics of diagrams of workflows in
CAD. The method creates a timeline ontology as taxonomy (the

first conceptual level of ontology description). The method helps
the designer, analyst, and expert to identify errors in
understanding the flow of design work, reduce the semantic gap

between the stages of conceptual design, layout, and prototype
manufacturing, and increase the digital engineering culture of
joint design of complex technical automated systems. The method
differs from the existing ones in that it takes into account the
hybridity and dynamic nature of grammatical models of project

workflows, takes into account the concept of "time" and the
parameter "hours".

In future works authors describe the method to restructure any

diagram for checking errors.

5. ACKNOWLEDGMENTS

The reported research was funded by Russian Foundation for
Basic Research and the government of the region of the Russian
Federation, grant № 18-47-730032.

6. REFERENCES
[1] Fischer, L. 2005. Workflow Handbook. Workflow

Management Coalition.

[2] Van Der Aalst, W., and van Hee, K. M. 2004. Workflow

management: models, methods, and systems. MIT Press,
Cambridge, Massachusetts, USA.

[3] Booch, G., Jacobson, I., and Rumbaugh, J. 1998. The Unified

Modeling Language User Guide. Addison-Wesley.

[4] Business Process Model and Notation (BPMN) Version 2.0,

https://www.omg.org/spec/BPMN/2.0/PDF, last accessed
2020/03/02.

[5] Janssen, W., Mateescu, R., Mauw, S., and Springintveld, J.

1998. Verifying business processes using SPIN. In

Proceedings of the 4th International SPIN Workshop (Paris,
France, November 2 1998) SPIN’98, 21-36.

84

https://www.omg.org/spec/BPMN/2.0/PDF

[6] Mayer, R. J., Painter, M. K., and de Witte, P. S. 1994. IDEF

family of methods for concurrent engineering and business

re-engineering applications. Knowledge Based Systems,
College Station, Texas, USA.

[7] Samuilov, K. E., Serebrennikova, N. V., Chukarin, A.V., and

Yarkina, N. V. 2008. Fundamentals of formal methods for

describing business processes. RUDN, Moscow.

[8] LOODSMAN:PLM, https://ascon.ru/products/889/review/,
last accessed 2020/03/02.

[9] Pozewaunig, H., Eder J., and Liebhart W. 1997. ePERT:
Extending PERT for workflow management systems. In
Proceedings of the First East-European Symposium on

Advances in Databases and Information Systems (Siant-

Petersburg, Russia, September 02 – 05, 1997). ADBIS’97.
Nevsky Dialect, Saint-Petersburg, Russia, 217-224.
DOI=https://doi.org/10.14236/ewic/ADBIS1997.34

[10] ASCON. https://ascon.ru, last accessed 2020/03/02.

[11] Costagliola, G., Lucia, A. D., Orefice, S., and Tortora, G.

1998. Positional grammars: a formalism for LR-like parsing

of visual languages. In Visual Language Theory, Marriott K.,
Meyer B., Eds. Springer, New York, NY, 171-191. DOI=
https://doi.org/10.1007/978-1-4612-1676-6_5

[12] Roth, C. 2011. Using Microsoft Visio 2010. Pearson
Education.

[13] Easy-to-Use UML Tool, https://www.visual-
paradigm.com/features/uml-tool/, last accessed 2020/03/02.

[14] Santos, P. S., Almeida, J. P. A., and Pianissolla, T. L. 2011.

Uncovering the organizational modeling and business
process modeling languages in the ARIS method.
International Journal of Business Process Integration and

Management. 5, 2 (May. 2011), 130-143. DOI=
https://dx.doi.org/10.1504/IJBPIM.2011.040205

[15] Hoffmann, H.-P. 2012. Deploying model-based systems

engineering with IBM® rational® solutions for systems and
software engineering. In Proccedings of 2012 IEEE/AIAA

31st Digital Avionics Systems Conference (Williamsburg,
VA, USA, October 14-18, 2012). DASC’12. IEEE, 1-8.
DOI= https://doi.org/10.1109/DASC.2012.6383084

[16] Zhang, D. Q., and Zhang, K. 1997. Reserved graph grammar:
A specification tool for diagrammatic VPLs In Proceedings

of 1997 IEEE Symposium on Visual Languages (Isle of

Capri, Italy, September 23-26, 1997). VL’97. IEEE, 284-291.
DOI= https://doi.org/10.1109/VL.1997.626596

[17] Kalyanov, G. N. 2006. Modeling, analysis, reorganization

and optimization of business processes. Finance and
statistics, Moscow.

[18] Fu, K. 1977. Structural Methods of Pattern Recognition. Mir,
Moscow.

[19] Rekers, J., and Schurr, A. 1997. Defining and parsing visual

languages with layered graph grammars. Journal of Visual

Languages and Computing. 8, 1 (February. 1997), 27-55.
DOI=https://doi.org/10.1006/jvlc.1996.0027

[20] Zhang, D.-Q., Zhang, K., and Cao J. 2001. A context-
sensitive graph grammar formalism for the specification of
visual languages. The Computer Journal. 44, 3 (January.

2001), 186-200. DOI=
https://doi.org/10.1093/comjnl/44.3.186

[21] Sharov, O. G., and Afanasiev, A. N. 2005. Syntactically-
oriented implementation of graphic languages based on
automatic graphic grammars. Programming and Computer

Software. 6, 31 (2005), 56-66.

[22] Sharov, O. G., and Afanasiev, A. N. 2011. Methods and

means of translating graphic diagrams. Programming and

Computer Software. 3, 37 (2011), 65-76.

[23] Aho, A., Sethi, R., Ullman, J., and Lam, M. 2006.
Compilers: Principles, Techniques, and Tools. 2nd edition.
Addison-Wesley.

[24] Sharov, O.G., and Afanasyev A.N. 2008. Neutralization of
syntax errors in graphic languages. Programming and

Computer Software. 1, 37 (2008), 61-66.

[25] Sharov, O. G., and Afanasiev A. N. 2011. Methods and
means of translating graphic diagrams. Programming and

Computer Software. 3, 37 (2011), 65-75.

[26] Afanasyev, A., Voit, N., and Ukhanova, M. 2018. Control
and analysis of denotative and significant semantic errors

diagrammatic models of design flows in designing automated

systems. Radioengineering. 6, (2018), 84-92.

[27] Myers, G. J., Sandler, C., and Badgett, T. 2011. The art of

software testing. John Wiley & Sons, Hoboken, New Jersey,
USA.

[28] Karpov, Yu. G. 2010. MODEL СHECKING. Verification of
concurrent and distributed software systems. BHV-
Petersburg, Saint-Petersburg.

[29] Brooks, F. 1995. The mythical man-month: essays on

software engineering. Anniversary edition. Addison Wesley
Longman.

[30] Felderer, M., Matthias, B., Johns, M., Brucker, A. D., Breu,
R., and Pretschner, A. 2016. Security testing: A survey. In
Advances in Computers, Vol. 101, A. Memon, Ed. Elsevier,
1-51. DOI= https://doi.org/10.1016/bs.adcom.2015.11.003

[31] Yoo, S., and Harman, M. 2012. Regression testing
minimization, selection and prioritization: a survey. Software

Testing, Verification and Reliability. 22, 2 (2012), 67-120.
DOI= https://doi.org/10.1002/stvr.430

[32] Kotlyarov, V. P., and Kolikova T. V. 2009. Fundamentals of

modern software testing. Textbook manual for universities.
Binom. Knowledge laboratory, Moscow, Russia.

[33] Rothermel G., and Harrold, M. J. 1997. A Safe, Efficient
Regression Test Selection Technique. ACM Transactions on

Software Engineering and Methodology. 6, 2 (April. 1997),
173-210. DOI= https://doi.org/10.1145/248233.248262

[34] Ball, T. 1998. On the limit of control flow analysis for
regression test selection. In Proceedings of the 1998 ACM

SIGSOFT international symposium on Software testing and

analysis (Clearwater Beach, Florida, USA, March 02 - 04,
1998). ISSTA ‘98. Association for Computing Machinery,

New York, NY, USA, 134-142. DOI=
https://doi.org/10.1145/271775.271802

[35] White, L.J., and Leung, H.K.N. 1992. A Firewall Concept for
Both Control-flow and Data-flow Inregression Integration
Testing. In Proceedings of the Conference on Software

Maintenance (Orlando, Florida, USA, November 09 – 12,

1992). ISCM ’98. IEEE, 262-271. DOI=
https://doi.org/10.1109/ICSM.1992.242535

85

https://ascon.ru/products/889/review/
https://doi.org/10.14236/ewic/ADBIS1997.34
https://ascon.ru/
https://doi.org/10.1007/978-1-4612-1676-6_5
https://www.visual-paradigm.com/features/uml-tool/
https://www.visual-paradigm.com/features/uml-tool/
https://dx.doi.org/10.1504/IJBPIM.2011.040205
https://doi.org/10.1109/DASC.2012.6383084
https://doi.org/10.1109/VL.1997.626596
https://doi.org/10.1006/jvlc.1996.0027
https://doi.org/10.1093/comjnl/44.3.186
https://doi.org/10.1016/bs.adcom.2015.11.003
https://doi.org/10.1002/stvr.430
https://doi.org/10.1145/248233.248262
https://doi.org/10.1145/271775.271802
https://doi.org/10.1109/ICSM.1992.242535

[36] Afanasyev, A., Voit, N., Ukhanova, M., and Ionova, I. 2017.
Development and analysis of design-engineering workflows
(mentioned as an instance a radio engineering enterprise). In
2017 IEEE 11th International Conference on Application of

Information and Communication Technologies (Moscow,

Russia, September 20 – 22, 2017). AICT’17. IEEE.
DOI=https://doi.org/10.1109/icaict.2017.8687262

[37] Voit, N., Kirillov, S., Kanev, D. 2019. Automation of
Workflow Design in an Industrial Enterprise. In
Computational Science and Its Applications – ICCSA 2019.
ICCSA ‘19, vol. 11623. Springer, Cham, 551-561. DOI=
https://doi.org/10.1007/978-3-030-24308-1_44

[38] Afanasyev, A., Voit, N., and Kirillov, S. 2019. Temporal

Automata RVTI-Grammar for Processing Diagrams in
Visual Languages as BPMN, eEPC and Askon-Volga. In
Proceedings of the 2019 5th International Conference on

Computer and Technology Applications (ICCTA 2019).

ICCTA’19. Association for Computing Machinery, New
York, NY, USA, 71-75. DOI=
https://doi.org/10.1145/3323933.3324067

[39] Voit, N., Ukhanova, M., Kirillov, S., Bochkov, S. 2019.
Method to Create the Library of Workflows. In Proceedings

of the 14th International Conference on Interactive Systems:

Problems of Human-Computer Interaction,. IS’2019.
UlSTU, Ulyanovsk, 97-107.

[40] Afanasyev, A., Gladkikh, A., Voit, N., Kirillov, S. 2019.
Processing of Conceptual Diagrammatic Models Based on

Automation Graphical Grammars. In Proceedings of the

Third International Scientific Conference “Intelligent
Information Technologies for Industry” (IITI’18). IITI'18.

Advances in Intelligent Systems and Computing, vol 875.
Springer, Cham, 369-378. DOI= https://doi.org/10.1007/978-
3-030-01821-4_39

86

https://doi.org/10.1109/icaict.2017.8687262
https://doi.org/10.1007/978-3-030-24308-1_44
https://doi.org/10.1145/3323933.3324067
https://doi.org/10.1007/978-3-030-01821-4_39
https://doi.org/10.1007/978-3-030-01821-4_39

	16-E1599-ICCTA 2020

