
Analysis and control of dynamic distributed 

workflows in the design and reengineering of 

complex automated systems* 
 

A.N. Afanasyev, N.N. Voit, A.G. Igonin 

«Computing technique» department 

Ulyanovsk State Technical University 

Ulyanovsk, Russia 

{a.afanasev, n.voit}@ulstu.ru, igonin@ritg.ru 

 

 

 

 

 

 

 

 

 
Abstract—Authors propose a method for analyzing, control 

and translation distributed workflows based on own RV-, RVTt- 

grammars. The languages BPMN and BPEL are used by the 

authors as an example. An estimation of the method effectiveness 

is presented. 

Keywords—diagrammatic workflow; grammars; analysis; 

translation 

I.  INTRODUCTION  

Dynamic distributed workflows can be defined as a set of 
related operations, the implementation of which is aimed at 
achieving the company's goal, and they are active in solving 
project tasks and reengineering tasks. Such activities can come 
from a person, device or program. 

Each company is created to fulfill certain goals, therefore in 
any company there are workflows, even if they are not described 
and not documented. The introduction of a formal description of 
project workflows allows companies to build company’s quality 
management systems, to solve problems of building an effective 
management structure, to optimize activity based on key 
indicators. 

Whitestein Technologies, Magenta Technologies, 
SkodaAuto, Volkswagen, Saarstahl AG note that the first 
generation of static management systems of product lifecycle 
and project workflows [1] can no longer meet the requirements 
of many companies, approach and automated tools of the first 
generation of project workflow standardization have already 
exhausted its resources, and as a result, there are poorly 
formalized (poor-quality) processes, stimulating the growth of 
expenses for their development and improvement. 

The authors of this research work used to use the definition 
given in [2] for the dynamic project workflows – project 
workflows, adapted to changes in the environment. Dynamic 
distributed workflows are not necessarily the sequence of 
designer’s actions. Dynamic distributed workflows can be 
implemented by several designers within the same division of 
the company, covering several of its divisions or even several 
divisions of different companies. Therefore, dynamic distributed 

workflows are represented as the parallel activity of many 
performers that consistently perform their functions. 

In the case of a set of distributed project workflows within a 
single company or within the framework of associations of 
different companies, such flows must be monitored, analyzed 
and translated into relevant representations. 

The management systems for such workflows are 
represented by frameworks that provide the accumulation of 
flows, their scheduling and presentation in the form of various 
graphical notations, e.g., SRML, BPMN, EPC, UML, IDEF0, 
WPDL, B2B [3]. 

The business processes representation as diagrams is 
intended to help designers to develop and analyze project 
decisions, designing preproduction, preproduction engineering 
with the help of logical reasoning on specific complex business 
processes. Many systems for controlling the project workflows 
are developed for different paradigms and have a scientifically 
closed research and application [4]. The methods for processing 
dynamic distributed workflows are mainly divided into 
supporting and not supporting dynamic properties [5]. Methods 
based on graphical languages UML, WPDL, BPMN cannot 
handle dynamic properties, and Petri networks, π-calculus, 
model checking are able to handle dynamic properties of 
dynamic distributed workflows. 

The paper has the following structure. Section 2 presents the 
research problem. Section 3 briefly presents an overview of 
orchestration, choreography and the translation purpose. Section 
4 contains RV-, RVTt-grammars for analysis, translation of 
dynamic distributed workflows. Section 5 presents the 
effectiveness assessment of the RV-grammar use. The 
conclusions and further research directions are presented in the 
last section. 

II. PROBLEM 

When solving the tasks of processing dynamic distributed 
workflows, there are problems with access to resources, 
blocking, limiting the liveliness. The presence of a large number 
of interacting dynamic distributed workflows poses the task of 
formal analysis, control and translation, which can be performed 

This research is supported by the grant of the Ministry of Education and 

Science of the Russian Federation, the project № 2.1615.2017. 

The reported study was funded by RFBR and Government of Ulyanovsk 

Region according to the research project № 16-47-732152. 

The reported study was funded by RFBR according to the research 
project № 17-07-01417. 



by various methods. At present, π-calculus is a promising but 
still very young and evolving theory. It has many open questions 
and unresolved problems. Petri nets have the following 
limitations: 

    • there is no universal framework for project workflows 
modeling and analysis on the basis of Petri nets. In order to 
analyze various properties (liveliness, reachable, safety), 
workflows are modeled in different types of Petri nets, which is 
“ad hoc”. 

    • there is no mechanism that would assist the designer in 
modeling and ensure the successful completion of the task with 
the necessary properties. 

    The model checking method was extensive use for 
workflow analysis in error-free systems development during the 
conceptual design phase. However, it is intended for 
experienced scientists and engineers, since it is complex in 
understanding and operating [5]. 

Dynamic distributed workflows are also specified by 
managers who do not have training in formal models and 
informatics. For formal analysis of dynamic distributed 
workflows, it is required a detailed representation of the process 
model in a formal language that is difficult to build and 
understand to managers. 

To solve this problem, the authors of the research work 
propose their own approach to analysis, control and translation 
into the relevant representations (models) of dynamic distributed 
workflows. 

III. ORCHESTRATION&CHOREOGRAPHY 

Orchestration is a description of an enterprise’s internal 
business process in the form of the flow of interaction between 
internal and external web services of an enterprise. The point of 
view on this process is purely internal, e.g., from the executive 
staff’s point of view or on from the business process owner’s 
point of view. BPEL (Business Process Executive Language), 
XPDL (XML Process Definition Language), UML are modeling 
languages for describing the orchestration.  In order to perform 
an orchestration, it is required the presence of a central processor 
called web services. In this case, Web services “do not know” 
that they participate in a more global business process. 

The orchestration is always a control from one participant’s 
standpoint in the process. Choreography allows each participant 
to describe his/her part of the interaction. When using 
choreography, the messages’ sequences between several 
participants and sources are tracked. 

Choreography is the definition of a condition sequence in 
which several independent participants exchange messages in 
order to perform some general business task (e.g., B2B). 
Accordingly, WS-CDL (Web-services Choreography 
Description Language) and ebXML (Electronic Business using 
eXtensible Markup Language) are modeling languages for 
describing the choreography. Business processes choreography 
does not require a central coordinator, since each web service 
“knows” when to perform its operations and with what other 
web service it interacts with (Figure 1). 

The proposed standards of orchestration and choreography 
must meet several requirements related to the language 
description of business process workflows and to the process 
execution infrastructure. These requirements include: 
asynchronous call, management of exceptional situations, 
transactional integrity assurance, dynamism, flexibility, 
adaptability, ability of higher-level service composition of 
existing processes. 

Translation programs are used to convert dynamic 
distributed workflows. For example, a BPEL description of a 
business process is translated from BPMN (Figure 2), and then 
the source code in a specific language (e.g., Java) is translated 
from the BPEL description of the business process. The authors 
developed RVTt-grammar for this purpose. 

 

Fig. 1. An example of significance of the orchestration and choreography in 

large enterprises 

 

  
  

 

C
h

o
re

o
g
ra

p
h

y
 

O
rc

h
es

tr
at

io
n
 

O
rc

h
es

tr
at

io
n
 

O
rg

an
iz

at
io

n
 1

 
O

rg
an

iz
at

io
n

 2
 

D
ep

ar
tm

en
t 

1
 

D
ep

ar
tm

en
t 

2
 

D
ep

ar
tm

en
t 

2
 

D
ep

ar
t

m
en

t 
1
 

BPEL 

BPMN 

Java 

B2B 

Petri net 



 

Fig. 2.  Translating BPMN to BPEL, and BPEL to Java 

IV. RV-, RVTT-GRAMMAR  

A. Review of grammars 

We review a reserved graph grammar, a positional grammar, 
a relational grammar, and a web grammar to represent business 
process and workflow as diagrams with the help the tools [6-10]. 

1. A positional grammar: uses a plex-structure, which has 
not attaching points, and does not consider dynamically 
links of inputs\outputs, therefore, it cannot be used for 
graphical languages by a designer. 

2. A relational grammar: generates a non-exhaustive list of 
errors that cannot be defined to analysis. 

3. A reserved graph grammar, and a web grammar: save 
sentential form of a diagram, that takes a lot of time to 
analysis it. 

For reviewed grammar, we summarize problems as: 

1. Increasing rules to describe the grammars takes much time 

for an analysis, and has exponential or polynomial requires 

of time. 

2. Reviewed grammars have a sentential form to represent 
a diagram. 

3. There are not tools for the semantic analysis of diagram 
attributes. 

B. RV-grammar 

The authors have developed automaton grammar, called RV-
grammar, to analysis and check (control) diagrams for the tools, 
described in the papers [11-18]. 

RV-grammar has a basis of the L (R) language grammar, 
which can be written as: 

 𝐺 = (𝑉, Σ, Σ
~

, 𝑅, 𝑟0) 

where 𝑉 = {𝑣𝑙 , 𝑙 = 1, 𝐿} is an auxiliary alphabet (the 
alphabetical operations with the internal memory); Σ = {𝑎𝑡 , 𝑡 =

1, 𝑇} is a terminal alphabet, which is the union of its graphic 

objects and links (the set of primitives); Σ̃ = {𝑎̃𝑡 , 𝑡 = 1, 𝑇̃} is a 
quasi-terminal alphabet, extending the terminal alphabet. The 
alphabet includes: 

• quasi-terms of graphic objects, 

• quasi-terms of graphic objects with more than one input, 

• quasi-terms of links, marked with the specific semantic; 

• quasi-term for the end of an analysis; 

• 𝑅 = {𝑟𝑖 , 𝑖 = 1, 𝐼} is the scheme of the grammar (a set of rules, 
where each complex  𝑟𝑖 consists a subset 𝑃𝑖𝑗  of rules, where 

𝑟𝑖 = {𝑃𝑖𝑗 , 𝑗 = 1, 𝐽}); 

• 𝑟0 ∈ 𝑅 is an axiom of RV-grammar (the initial complex of 
rules), 𝑟𝑘 ∈ 𝑅 is a final complex of rules. 

The complex of rules 𝑃𝑖𝑗 ∈ 𝑟𝑖   is given as: 

 𝑎̃𝑡
𝑊γ(γ1,...,γ𝑛)
→        𝑟𝑚 

where Wγ(γ1, . . . , γn) – n-ary relation, defining an operation 

with the internal memory depending on γ ∈{0, 1, 2, 3}; Ωµ is a 
modification operator, changing the type of the operation with 
the memory, and µ{0,1,2};  𝑟𝑚 ∈ 𝑅 is the receiver of rules. 

The internal memory is presented by a stack for processing 
the graphic objects that have more than one output to save the 
information of link-marks, and elastic tapes for processing the 
graphic objects that have more than one input to mark the 
number of returns to a given vertex, and hence the number of 
incoming links. It should be noted that the elastic tape reads data 
from cells of the internal memory without a content destruction, 
and the cells of elastic tapes operates on data as a counter defined 
on positive integers. 

BPMN 

BPEL 

Java 

O
rc

h
es

tr
at

io
n
 Translating 

Translating 

Analysis Make decision 

<process name = “Make decision”> 

   <sequence> 

      </invoke operation = “Analysis”> 

      </invoke operation= “Make decision”> 

   </sequence> 

</process> 

void MakeDecision { 

   Analysis (); 

   Make_decision (); 
} 

Make decision 



The chain of 𝜑 = 𝛼𝑡1, 𝛼𝑡2, … , 𝛼𝑡𝜆 is called RV-output 𝛼𝑡𝜆 of 

𝛼𝑡1 and it is denoted 𝛼𝑡1
𝑅𝑉
⇒ 𝛼𝑡𝜆 if for any 𝜉 < 𝜆 and 𝑟𝑒 ∈ 𝑅 are 

as 𝛼𝑡𝜉+1 ∈ 𝑟𝑒 (𝑎𝑡
Ω𝜇[𝜆1,…,𝜆𝑛]
→        𝑟𝑒) ∈ 𝑟𝑖 . 

RV-output is considered to be complete (it is denoted as 𝛼𝑡1
𝑅𝑉
⇒ 𝛼𝑡𝜆), if 𝑎𝑡𝜆 is generated by rules with 𝑟𝑘 on the right-hand 
side. 

RV-grammar is effective both for generating and 
recognizing. 

The application of any complex of rules 𝑟0(RV-grammar 
axiom) generates some chain of language L on its RV-grammar. 
The complex of rules determines both the initial symbol of 
generated chain, the operation on the internal memory, and also 
the name of receiver of rules. The generation is completed using 
a complex of rules with 𝑟𝑘  on the right-hand side. 

The recognition of the chain runs verifying the first symbol 
using rules 𝑟0, while next symbol appearing, and the last symbol 
of the chain must belong to a complex of rules with 𝑟𝑘 on the 
left-hand side. 

The use of rules is accompanied with appropriate operations 
on the internal memory. The internal memory is empty at the 
start, and at the end of these processes, the memory contains 
operations of rules with 𝑟𝑘 on the right-hand side. 

The RV-grammar for the business processes described in 
notations of BPMN is given in Table 1.  

TABLE 1. RV-GRAMMAR FOR BPMN 

№ 

Sta

rt 

Sta

te 

Quasite

rm 

End 

State 
Operations with memory 

1 r0 A0 r1 W1(𝑡1𝑚
(𝑘−1)

) 

2  Aim r1 О 

3  A r4 W1(𝑡2𝑚
(𝑘−1)

) 

4  EG r3 W1(𝑡3𝑚
(𝑘−1)

) 

5  EBG r5 W1(𝑡5𝑚
(𝑘−1)

) 

6  PG r3 W1(𝑡6𝑚
(𝑘−1)

) 

7 r1 rel r7 O 

8 r2 rel r7 O 

9  O r3 O 

10 r3 assoc r9 О 

11  O r6 O 

12 r4 Aim r2 O 

13  O r3 O 

14 r5 erel r8 O 

15  O r3 O 

16 r6 
labelA

0 
r7 W2(b

1m) 

17  labelA r7 W2(b
2m) 

18  labelE
G 

r7 W2(b
3m) 

19  labelI

G 
r7 W2(b

4m) 

20  labelE
BG 

r5 W2(b
5m) 

21  labelP

G 
r7 W2(b

6m) 

22  no_lab
el 

rk * 

23 r7 Ai r1 O 

24  Aim r2 W1(1
t(1), kt(2))/W2(e

t(1)) 

25  _Aim r2 W1(inc(mt(1))/W3(m
t(1) < kt(2)) 

26  Ak r3 W1(1
t(3), kt(4))/W2(e

t(4)) 

27  _Ak r3 W1(inc(mt(3))/W3(m
t(3) < kt(4)) 

28  A r4 
W1(1

t(5), kt(6), (W2(b
t(15)) – 1 + k)t(15), 

(W2(b
t(16)) – n + 1)t(16))/W2(e

t(5)) 

29  _A r4 
W1(inc(mt(5))/W3(m

t(5) < kt(6)) && 

W1(𝑡2𝑚
(𝑘)

)/W3(m
t(5)=kt(6)) 

30  EG r3 
W1(1

t(7), kt(8), (W2(b
t(16)) – n + 

k)t(16))/W2(e
t(7)) 

31  _EG r3 
W1(inc(mt(7))/W3(m

t(7) < kt(8)) && 

W1(𝑡3𝑚
(𝑘)

)/W3(m
t(7)=kt(8)) 

32  EBG r5 
W1(1

t(7), kt(8), (W2(b
t(16)) – n + 

k)t(16))/W2(e
t(7)) 

33  _EBG r5 
W1(inc(mt(7))/W3(m

t(7) < kt(8)) && 

W1(𝑡3𝑚
(𝑘−1)

)/W3(m
t(7)=kt(8)) 

34  PG r3 
W1(1

t(13), kt(14), (W2(b
t(15)) – n + 

k)t(15))/W2(e
t(13)) 

35  _PG r3 
W1(inc(mt(13))/W3(m

t(13) < kt(14)) && 

W1(𝑡6𝑚
(𝑘)

)/W3(m
t(13)=kt(14)) 

36 r8 Aim r2 O 

37 r9 DO r6 O 

38 rk 
   

C. RVTt-grammar 

RVTt-grammar is a translating grammar that allows the 
system to make a syntax-oriented translation of graphical 
language diagrams into textual formal descriptions. RVTt- 
grammar is the development of the RV-grammar, in which the 
products of the grammar scheme are expanded to store the 
correspondences in terms of the target formal description, and 
the internal memory stores the information necessary for the 
translation. 

RVTt - the grammar of the language L (G) is the ordered 
seven of non-empty sets  

                                 𝐺  =   (𝑉, 𝑈, Σ, Σ
~

, 𝑀, 𝑅, 𝑟0) 

The following sets are defined additional for (1) in (3).  

𝑀 = 𝑇𝑇 ∪ 𝑇𝑁 is a combination of the alphabets of terminal 
(TT) and nonterminal (TN) symbols of the target language.  

𝑅 = {𝑟𝑖 , 𝑖  =   0, 𝐼} is a grammar scheme of G (the set of 
names of production complexes, each complex 𝑟𝑖 consists of a 

set of   𝑃𝑖𝑗  products 𝑟𝑖   =   {𝑃𝑖𝑗 , 𝑗  =   1, 𝐽});  



𝑟0 ∈ 𝑅 is the axiom of RVTt-grammars (the name of the 
initial set of products), 𝑟𝑘 ∈ 𝑅 is the final set of products.  

The set of  𝑉, Σ, Σ
~

, 𝑅, 𝑟0 are inherited from the RV 
grammar and are used to determine the syntactical correctness 
of the analyzed diagram.  

The sets of 𝑈,𝑀 are necessary for giving translating 
functions to the grammar. They create a new formalism by 
expanding the RV-grammar.  

𝑃𝑖𝑗 ∈ 𝑟𝑖  production is given as 

             𝑃𝑖𝑗 : 𝑎
−

𝑡

Ωμ[𝑊ν(γ1,… ,γ𝑛)]{Θμ[𝑊ν(γ1,… ,γ𝑛)]}
→                          𝑟𝑚{χ},          (4) 

where 𝑊ν(γ1, … , γ𝑛) is n-th ratio that determines the type 
of operation over the internal memory depending on ν  ∈
  {0,1,2,3};  

Ωμ (Θμ) is the modification operator in a certain way, 

changing the type of operation over the memory of the base 
(target) language, and μ ∈ {0,1,2};  

𝑟𝑚 ∈ 𝑅 is the name of the product complex-successor;  

χ – is a display of quasi-term in terms of the target language 
(simbols’ set 𝑚 ∈ 𝑀).  

V. EFFICIENCY 

 

Fig. 3. Efficiency of analysis errors with the help RV-grammar into BPMN 

Figure 3 shows the efficiency. Graphic objects are graphic 
figures as a circle, a rectangle, a rhombus, a square, a line and 
etc. We propose a formula [13] for calculation of the efficiency 
that can be written as: 

Required time = с ∙ Ls, Ls = ∑ (∑ vinij + ∑ voutij
Vi
j=1

Vi
j=1 ) +m

i=1

∑ (Vi + ∑ v_outij
Vi
j=1 ) + no_labelt

i=m+1 .           (5) 

where c – the constant of realization of algorithm, which 
determines a quantity of time (operators) that are spent to 
analysis one graphic object; Ls – the number of graphic objects; 

Vi – the number of graphic objects of i-type; v_inij – the 

number of inputs to j-graphic objects of i-type; v_outij – the 

number of outputs from j-graphic objects of i-type; t – a total of 
object types; m – a quantity of object types that have more than 
one output. 

Thus, RV-grammars have a linear characteristic of time 
costs, in contrast to known grammars, e.g., positional, 
preserving, relational, having exponential time analysis. 

Regarding error control of RV grammar allow to record the 
errors called a rupture of a context, connected with use of logical 
communications, such as ‘AND’, ‘OR’, ‘XOR’, and also 
context-dependent errors which will not be found by means of 
the mentioned tools can be in the text (notations) of any 
diagrams. They become “expensive” errors in design. 

CONCLUSION AND FUTURE WORK 

In this paper, the authors proposed a framework for the 
design-engineering workflows analysis and translation. The 
analysis of existing approaches and tools was carried out and 
shown the advantage of RV-, RVTt-grammars. In future 
research works the authors will examine the timed grammars for 
design-engineering workflows analysis, control and translation 
in which time factor will occupy a significant place. Using such 
grammar will eliminate a number of semantic errors at the stage 
of conceptual design of complex computer-based systems. 

REFERENCES 

[1] A global Swiss company offering advanced intelligent application 
software for multiple business sectors. http://whitestein.com/. 

[2] Ilia Bider, Amin Jalali, “Agile Business Process Development: Why, How 
and When - Applying Nonaka's theory of knowledge transformation to 
business process development,” Information Systems and e-Business 
Management, August 2014. doi: 10.1007/s10257-014-0256-1 

[3] Michael zur Muehlen, Marta Indulska, Gerrit Kamp, “Business Process 
and Business Rule Modeling Languages for Compliance Management: A 
Representational Analysis,” Proceeding ER '07 Tutorials, posters, panels 
and industrial contributions at the 26th international conference on 
Conceptual modeling,  vol. 83, pp. 127-132, 2007. 

[4] D. Georgakopoulos, M. Hornick, and A. Sheth, “An overview of 
workflow management: From process modeling to infrastructure for 
automation,” Journal on Distributed and Parallel Database Systems, vol. 
3(2), pp. 119-153, April 1995. 

[5] Yuan Wang, Yushun Fan, “Using Temporal Logics for Modeling and 
Analysis of Workflows,” Proceedings of E-Commerce Technology for 
Dynamic E-Business, 2004. IEEE International Conference on, 2004. doi: 
10.1109/CEC-EAST.2004.72 

[6] Fu K., “Structural methods of pattern recognition,” Moscow: Mir, – P.319 
1977. 

[7] Costagliola G., Lucia A.D., Orece S., Tortora G., “A parsing methodology 
for the implementation of visual systems,” 
http://www.dmi.unisa.it/people/costagliola/www/home/papers/method.p
s.gz. 

[8] Wittenburg K., Weitzman L., “Relational grammars: Theory and practice 
in a visual language interface for process modeling,” 
http://citeseer.ist.psu.edu/wittenburg96relational.html, 1996. 

[9] Zhang D. Q., Zhang K., “Reserved graph grammar: A specification tool 
for diagrammatic VPLs,” Visual Languages. Proceedings. 1997 IEEE 
Symposium on. – IEEE, 1997, pp. 284-291, 1997. 

[10] Zhang K. B., Zhang K., Orgun M. A., “Using Graph Grammar to 
Implement GlobalLayout for A Visual Programming Language 
Generation System,” 2002. 

[11] Alexander Afanasyev, Nikolay Voit, “Intelligent Agent System to 
Analysis Manufacturing Process Models,” Proceedings of the First 
International Scientific Conference «Intelligent Information 
Technologies for Industry» (IITI’16) Volume 451 of the series Advances 
in Intelligent Systems and Computing. Russia, 2016, pp. 395-403. 

[12] Alexander Afanasyev, Nikolay Voit, Rinat Gaynullin, “The Analysis of 
Diagrammatic Models of Workflows in Design of the Complex 
Automated Systems,” Proceedings of the First International Scientific 
Conference «Intelligent Information Technologies for Industry» (IITI’16) 
Volume 450 of the series Advances in Intelligent Systems and 
Computing. Russia, 2016, pp. 227-236. 

0

50000

100000

150000

200000

0 5000 10000 15000

Spent 

on the 

analysis time,
in clock 

periods

Quantity of elements



[13] A.N. Afanasyev, N.N. Voit, R.F. Gainullin, “Diagrammatic models 
processing in designing the complex automated systems,” 10th IEEE 
International Conference on Application of Information and 
Communication Technologies (AICT). Baku, Azerbaijan, 2016, pp. 441-
445. 

[14] Alexander Afanasyev and Nikolay Voit, “Multi-agent system to analyse 
manufacturing process models,” Proceedings of International conference 
on Fuzzy Logic and Intelligent Technologies in Nuclear Science - 
FLINS2016. France, 2016. pp. 444-449. 

[15] Afanasyev A.N., Voit N.N., Voevodin E.Yu., Gainullin R.F., “Control of 
UML diagrams in designing automated systems software,” Proceedings 

of The 9th IEEE International conference on Application of Information 
and Communication Technologies: AICT – 2015, 2015, pp. 285-288. 

[16] Sharov O.G., Afanas’ev A.N., “Syntax-directed implementation of visual 
languages based on automaton graphical grammars,” Programming and 
Computer Software. 2005. vol. 6. pp. 56-66, 2005. 

[17] Sharov O.G., Afanas’ev A. N., “Neutralization of syntax errors in the 
graphic languages,” Programming and Computer Software. 2008, vol. 1, 
pp. 61-66, 2008. 

[18] Sharov O.G., Afanas’ev A. N., “Methods and tools for translation of 
graphical diagrams,” Programming and Computer Software. 2011. vol. 3, 
pp. 65-76, 2011.

 


