
Development of RVT-grammar for analysis and

control dynamic workflows

A.N. Afanasyev, N.N. Voit, S.Y. Kirillov

«Сomputing technique» department

Ulyanovsk State Technical University

Ulyanovsk, Russia

{a.afanasev, n.voit}@ulstu.ru, xayc73@gmail.com

Abstract—Authors develop RVT-grammar to analyze and

control dynamic workflows. We consider aspects of dynamic

workflows: ensemble (orchestration, choreography) and

transformation with saving connections.

Keywords—timed grammars; temporal logic; business process

I. INTRODUCTION

The efficiency of business process can be improved with
help dynamical reconfiguration of business enterprise process as
workflows. There are some problems as deadlock, timing, safety
and others where modification of the workflows using design,
analysis, checking, modeling and transformation of dynamic
workflows [1].

The design and development of automated systems must
include the adaptation for agile requirements of an environment.
In work [2], the agile is a main property of the manufacture to
design. There are two behaviors of the enterprise. First of them
is to change own business process for the existing
manufacturing. Second of them is to create new marketable
products. In order enterprise change own business process for
increasing of product quality and to get new market outlets often.
The work [3] presents that the speed of development in industry
and technology need to change monolithic approaches.

A lot of the large enterprise as IBM, ARIS note that the
monolithic product lifecycle management systems with static
workflows are limited and not enough to successfully complete
the product lifecycle [4]. There are not enough resources in
approaches, automatic tools and the standardization of these
management systems. Therefore, the large enterprise and
companies have poorly designed workflows that stimulate
increasing a cost of a product, and the improvement of product
lifecycle becomes expense.

We used a definition given in [5] for a dynamic workflow as
a process of adaptation to the current environment. ProBis [6]
has monolithic workflows. Dynamic workflows are presented in
works [7-9] with YAWL (Yet Another Workflow Language)
and iPB. Also, we define the novel RVT-grammar as a timed
(temporal) finite state grammar using a memory as stacks and
elastic tapes.

There is an overview of works and the problem in
Introduction. Orchestration and choreography as Ensemble are

suggested in a section two. The novel grammar is presented in
section three, and control diagrams as transformation is offered
in a section four. In the end of this work, authors give the
conclusion and future works.

II. THE ENSEMBLE

Orchestration is the inner workflows in an enterprise or a
company that presents their inner business process [11]. IBM,
Microsoft, Oracle, BEA Systems create tools as BPEL4WS,
XLANG, WSFL to describe the business logic [12]. In order
there is only one manager for orchestration to control these
workflows in business process of enterprise.

 Choreography is the outer workflows in a lot of enterprises
and companies that have relationship each with other. Each
member of choreography can describe a role and his place in
workflows. All choreography relationships are monitored in log
(Fig. 1).

A dynamic of workflows represented at two aspects:
orchestration and exemplar of choreography which to add up to
ensemble. An emerged exemplar of choreography to be in link
with designed diagrams.

Organization 1 contains BPMN, IDEF0, UML AD, eEPC,
UML class diagram in orchestration. BPNM, IDEF0, UML AD
are in ensemble only [13, 14]. Organization 2 contains Java, C#,
Timed automaton, Petri nets in orchestration, but Java and
Timed automaton are in ensemble only.

Fig. 1. Ensemble of divers diagrams and hybrid orchestration

978-1-5090-4642-3/17/$31.00 ©2017 IEEE

Let’s consider an orchestration of IDEF0, UML AD
diagrams in ensemble (Fig. 1). IDEF0 diagrams performed very
well in functional tools with links like “Input”, “Output”,
“Control”, “Mechanism”. UML AD diagrams performed very
well in developing tools of algorithm. In case when it is not
necessary for considering control and mechanism at IDEF0 but
it is necessary for considering tracking flows of process need to
build UML AD diagram.

III. TIMED RVT-GRAMMAR WITH MEMORY

The authors have developed automaton grammar with
memory, called RVT-grammar, to analysis and control diagrams
with time for the agile management systems [15-23]. RVT-
grammar can be written as:

𝐺 = (𝑉, Σ, Σ
~

, 𝑅, 𝐶, 𝐸, 𝑇, 𝑟0)

where 𝑉 = {𝑣𝑙 , 𝑙 = 1, 𝐿} is a set of helper alphabet, that has
operations with the stack and the elastic tape;

 Σ = {𝑎𝑙 , 𝑙 = 1, 𝑇} is a set of terminal alphabet, that has a
group of primitive graphic objects and links;

 Σ̃ = {𝑎̃𝑙 , 𝑡 = 1, 𝑇̃} is a set of quasi-terminal alphabet, adding
the terminal alphabet, that includes following quasi-terms:
graphic objects; graphic objects that has more than one input;
links with the specific semantic; the end of the analysis;

𝑅 = {𝑟𝑖 , 𝑖 = 1, 𝐼} is the production of this grammar, that has
rules, and each complex 𝑟𝑖 has 𝑃𝑖𝑗 of rules, where 𝑟𝑖 = {𝑃𝑖𝑗 , 𝑗 =

1, 𝐽});

𝑟0 ∈ 𝑅 is an axiom and a first complex, 𝑟𝑘 ∈ 𝑅 is a last
complex.

This production, including a set of rules, 𝑃𝑖𝑗 ∈ 𝑟𝑖 that is given

as:

 𝑎𝑙
[𝑡𝑖]

𝑊ν(γ1,...,γ𝑛)
→ 𝑟𝑚 

where Wν(γ1, . . . , γn) is n-ary relation that has an operation
with the stack and the elastic tape, depending on ν ∈ {1, 2, 3}
(accordingly: 1 - read, 2 - write, 3 - compare); 𝑟𝑚 ∈ 𝑅 is the
receiver of rules;

𝐶 is a finite set of clock identifiers;

𝐸 − is a set of time expressions C (clock limitation and clock
reset), is limited by the following expressions: from the
beginning {𝑐 ≔ 0} and onwards {𝑐~𝑥}, and 𝑐 is a variable, and
𝑥 is a constant, ~ ∈ {=,<,≤,>,≥};

𝑇 ∈ {𝑡1, 𝑡2, 𝑡3… , 𝑡𝑛} is a set of timed labels with given

functions 𝐹𝑇Σ: Σ × 𝐶 × 𝐸 → 𝑇 and 𝐹𝑇Σ
~

: Σ
~

× 𝐶 × 𝐸 → 𝑇
accordingly.

The memories are stacks and elastic tapes. Stacks have an
information about processing graphic objects with two or more
outputs as a quasi-term. Elastic tapes have an information about
processing graphic objects with two or more inputs as numbers.

The writings, reading and comparing of data in these elastic
tapes performs with help cells that defined on natural numbers.

 The chain of 𝜑 = 𝛼𝑙1, 𝛼𝑙2, … , 𝛼𝑙𝜆 is called RVT-derivation

𝛼𝑙𝜆 from 𝛼𝑙1 and it is denoted 𝛼𝑙1
𝑅𝑉
⇒ 𝛼𝑙𝜆 if for any 𝜉 < 𝜆 and

𝑟𝑒 ∈ 𝑅 are as 𝛼𝑙𝜉+1 ∈ 𝑟𝑒 ,(𝑎𝑙
[𝑡𝑖]

𝑊γ(γ1,...,γ𝑛)
→ 𝑟𝑒) ∈ 𝑟𝑖 .

The analysis of this chain begins from the first terminal with
help a rule 𝑟0. Step by step we use rules 𝑟𝑖 for the analysis of this
chain. There is a rule 𝑟𝑘 in the end of the analysis. Operations
with memory of this RVT-grammar perform when reading,
writing and comparing cells of this chain. So, the stack is empty
in the start and in the end of this analysis also. The elastic tape
has a cortege of natural numbers in the end of the analysis.

IV. THE TRANSFORMATION

Dynamic reconfiguration of business process need to have a
mechanism for transformation of diagrams reaching flexibility,
improving a functional and an efficiency of enterprise’s business
process. In work [24-26] the problem of reconfiguration has
been researched both theoretical and practical.

Authors offer applying the structure transformation of a
diagram with help procedures: delete, insert and replace with
saving a connection during an interval of time.

It is necessary all graphic element have a timed label where
we can define time of the transformation. As rule BPMN, eEPC,
IDEF0, UML AD etc. graphic elements contain a description
(notes in UML AD) which can be define as a timed variable.

Let’s see an example of UML AD diagram (Fig. 2).

A0

Ak

A1 (t1)

A2 (t1)

A3

Fig. 2. UML AD diagram with t1 timed label

Graphic elements A1 and A2 have t1 timed labels. This
means that a current element will be transform at t1 time with
help operations: (1) Insert, (2) Replace, (3) Delete.

Reasoning to suppose that only one operation cab be
performed at one element. Therefore, timed label is assigned to
a tape where an element has their variants: number 1 – Insert,
number 2 – Replace, number 3 – Delete.

Additional information when Insert and Replace saved at
extended tape allowing to save both numbers and quasi-terms.

Additional Insert() function is used for the operation 1
allowing to get needed information from extended tape and form
inserted fragment.

Operation 2 is a complex operation that represents an
aggregate of removing and inserting operations. Replace()
additional function is brought for ease.

Deleting is considered in a start. The diagram has a form in
t1 time (Fig. 3).

A0

Ak

A3

Fig. 3. Deleting elements at diagram

The chain including deleting element can be infinite size.
Authors suggest the approach to perform deleting. If we meet
element with timed label, then timed label is put in a stack. Next
step an automaton follows about elements while not getting
element with absent timed label. In this case it perform
change_rel() special function that pop up from the stack timed
label at deleting element and assign its with a current element.
This algorithm is shown in Fig. 4.

In order not to leave deleting elements suspended in a
diagram when to pass deleting quasi-term delete () function
perform that delete elements from the diagram.
delete_with_link() function performs deleting elements with an
enter link.

A0

Ak

A1 (t1)

A2 (t1)

A3

Fig. 4. Assignment of links where deleting an element

The grammar for that diagram is shown in Table 1.

TABLE I. TIMED RVT-GRAMMAR FOR UML AD

Prev.

state

Quazi-term Next

state

Operation

r0 A0i r1 insert()/W3(kt(1)==1)

 A0 r1 o

r1 rel r2 o

r2 Ai r1 insert()/W3(kt(1)==1)

 Ar r1 replace()/W3(kt(1)==2)

 Ad r3 (delete(), W1(l1m))/ W3(kt(1)==3)

 A r1 o

 Ak r5 o

r3 drel r4 o

r4 Ai r1 (change_rel(),insert())/W3(kt(1)==1)

 Ar r1 (change_rel(), replace())/W3(kt(1)==2)

 Ad r3 delete_with_link()/W3(kt(1)==3)

 A r1 change_rel()

 Ak r5 change_rel()

r5 no_label rk *

V. CONCLUSION

There is the problem with workflows for checking and
exchanging the different formats between the large industrial
enterprise, and also between their department. Time begins to
play the main meaning for manufacturing that uses Internet of
things often. This is why authors develop timed RVT-grammar
to analyze, control and transform dynamic design workflows
where time is a famous role. We create this grammar as a
temporal finite state grammar that uses a memory like stack. So,
this grammar lets to remove several semantic errors (structural-
behavioral) at a stage of conceptual design in complex computer
systems, and also to solve reengineering tasks for the reactive
systems using real-time. As well as the transformation can check
bad elements at a diagram, and make a refurbishment of this
diagram. We show a simple example using AD UML diagrams.
We will define a set of typical structural-behavioral errors with
help to research for books and works, and try to extend it with
own checklist in future works.

ACKNOWLEDGMENT

This research is supported by the grant of the Ministry of
Education and Science of the Russian Federation, the project №
2.1615.2017/4.6. The reported study was funded by RFBR and
Government of Ulyanovsk Region according to the research
project № 16-47-732152. The reported study was funded by
RFBR according to the research project № 17-07-01417.

REFERENCES

[1] J. C. P. Aguilar, K. Hasebe, M. Mazzara, and K. Kato, “Model Checking
of BPMN Models for Reconfigurable Workflows”. URL:
https://www.researchgate.net/publication/304788360_Model_Checking_

of_BPMN_Models_for_Reconfigurable_Workflows Cited October 18,
2017.

[2] B. Sherehiy, W. Karwowski, J. K. Layer, “A review of enterprise agility:
Concepts, frameworks, and attributes,” International Journal of Industrial
Ergonomics, vol. 37, pp.445-460, May 2007.

[3] J. Highsmith, K. Orr, A. Cockburn, “Extreme programming,” E-Business
Application Delivery, pp. 4-17, Feb. 2000.

[4] A global Swiss company offering advanced intelligent application
software for multiple business sectors, 2016. URL: http://whitestein.com/
Cited October 18, 2017.

[5] I. Bider, A. Jalali, “Agile Business Process Development: Why, How and
When Applying Nonaka's theory of knowledge transformation to business
process development. Information Systems and e-Business
Management,” Springer-Verlag Berlin Heidelberg, 2014. URL:
https://www.researchgate.net/publication/266078141 Cited October 18,
2017.

[6] T. Andersson, A. Andersson-Ceder, and I. Bider, “State flow as a way of
analyzing business processes-case studies,” Logistics Information
Management, vol. 15(1), pp. 34-45, 2002. URL:
http://www.ibissoft.com/publications/Cases.pdf Cited October 10, 2017.

[7] YAWL Foundation, YAWL. URL: http://www.yawlfoundation.org/
Cited October 18, 2017.

[8] I. Bider, “Analysis of Agile Software Development from the Knowledge
Transformation Perspective,” in Perspectives in Business Informatics
Research. BIR 2014. Lecture Notes in Business Information Processing,
vol 194, Johansson B., Andersson B., Holmberg N., Eds. Springer, Cham,
2014.

[9] IbisSoft, “iPB Reference Manual,”. URL: http://docs.ibissoft.se/node/3
Cited October 18, 2017.

[10] T. Bultan “Analyzing Interactions of Asynchronously Communicating
Software Components,”. In: Beyer D., Boreale M. (eds) Formal
Techniques for Distributed Systems. Lecture Notes in Computer Science,
vol 7892. Springer, Berlin, Heidelberg, 2013. URL:
https://link.springer.com/chapter/10.1007/978-3-642-38592-6_1 Cited
October 18, 2017.

[11] Orchestration and Workflow. URL:
https://www.cloudenablers.com/blog/orchestration-and-workflow/ Cited
October 18, 2017.

[12] W. M. P. Van der Aalst, “Don’t go with the flow: Web services
composition standards exposed,” IEEE intelligent systems, vol. 18, no. 1,
pp. 72-76, 2003. URL:
http://www.martinfowler.workflowpatterns.com/documentation/docume
nts/ieeewebflow.pdf Cited October 18, 2017.

[13] D. A. Marca and C. L. McGowan. SADT: structured analysis and design
technique. McGraw-Hill, Inc., 1987. URL:
http://dl.acm.org/citation.cfm?id=31837 Cited October 18, 2017.

[14] TP026B, Rev. "Rational Unified Process.". URL:
https://www.ibm.com/developerworks/rational/library/content/03July/10
00/1251/1251_bestpractices_TP026B.pdf Cited October 18, 2017.

[15] A. Afanasyev, N. Voit, “Intelligent Agent System to Analysis
Manufacturing Process Models,” Proceedings of the First International
Scientific Conference «Intelligent Information Technologies for

Industry» (IITI’16) vol.451 of the series Advances in Intelligent Systems
and Computing. Russia, 2016, pp. 395-403.

[16] A. Afanasyev, N. Voit, R. Gaynullin, “The Analysis of Diagrammatic
Models of Workflows in Design of the Complex Automated Systems,”
Proceedings of the First International Scientific Conference «Intelligent
Information Technologies for Industry» (IITI’16) vol. 450 of the series
Advances in Intelligent Systems and Computing. Russia, 2016, pp. 227-
236.

[17] A.N. Afanasyev, N.N. Voit, R.F. Gainullin, “Diagrammatic models
processing in designing the complex automated systems,” 10th IEEE
International Conference on Application of Information and
Communication Technologies (AICT). Baku, Azerbaijan, 2016, pp. 441-
445.

[18] A. Afanasyev and N. Voit, “Multi-agent system to analyse manufacturing
process models,” Proceedings of International conference on Fuzzy Logic
and Intelligent Technologies in Nuclear Science - FLINS2016. France,
2016, pp. 444-449.

[19] A.N. Afanasyev, N.N. Voit, E.Yu. Voevodin, R.F. Gainullin, “Control of
UML diagrams in designing automated systems software,” Proceedings
of the 9th IEEE International conference on Application of Information
and Communication Technologies: AICT – 2015, 2015, pp. 285-288.

[20] O.G. Sharov, A.N. Afanas’ev, “Syntax-directed implementation of visual
languages based on automaton graphical grammars,” Programming and
Computer Software, vol. 6. pp. 56-66, 2005.

[21] O.G. Sharov, A. N. Afanas’ev, “Neutralization of syntax errors in the
graphic languages,” Programming and Computer Software. 2008, vol. 1,
pp. 61-66, 2008.

[22] O.G. Sharov, A. N. Afanas’ev, “Methods and tools for translation of
graphical diagrams,” Programming and Computer Software. 2011. vol. 3,
pp. 65-76, 2011.

[23] A.N. Afanasev, N.N. Voit, E.Yu. Voevodin, R.F. Gainullin, “Analysis of
Diagrammatic Models in the Design of Automated Software Systems,”
Object Systems – 2015: Proceedings of X International Theoretical and
Practical Conference (Rostov-on-Don, 10-12 May, 2015) / Edited by
Pavel P. Oleynik. – Russia, Rostov-on-Don: SI (b) SRSPU (NPI), 2015,
pp. 124-129.

[24] M. Mazzara, N. Dragoni, M. Zhou, “Dependable Workflow
Reconfiguration in WS-BPEL,” 5th Nordic Workshop on Dependability
and Security (NODES, 2011), 2011. URL: http://deploy-
eprints.ecs.soton.ac.uk/310/ Cited October 18, 2017.

[25] M. Mazzara, F. Abouzaid, N. Dragoni, A. Bhattacharyya, “Toward
Design, Modelling and analysis of Dynamic Workflow Reconfiguration,”
A Process Algebra Perspective. 8th International Workshop on Web
Services and Formal Method (WSFM 2011), 2011. URL:
http://orbit.dtu.dk/fedora/objects/orbit:71336/datastreams/file_6251396/
content Cited October 18, 2017.

[26] F. Abouzaid, A. Bhattacharyya, N. Dragoni, J. S. Fitzgerald, M. Mazzara
and M. Zhou, “A Case Study of Workflow Reconfiguration: Design,
Modelling, Analysis and Implementation,” Newcastle University,
Technical report CS-TR-1265, July 2011. URL:
http://www.cs.ncl.ac.uk/publications/trs/papers/1265.pdf Cited October
18, 2017.

