
2019 IEEE Conference on Information and Communication Technology (CICT)

978-1-7281-5398-8/19/$31.00 ©2019 IEEE

Virtual Workplaces Testing Method on Accordance

with the Technical Task

Nikolay Voit

Ulyanovsk State Technical University

Ulyanovsk, Russia

n.voit@ulstu.ru

Semen Bochkov

Ulyanovsk State Technical University

Ulyanovsk, Russia
bochkovsi@ido.ulstu.ru

 Sergey Kirillov

Ulyanovsk State Technical University

Ulyanovsk, Russia
kirillovsyu@gmail.com

Abstract—Virtual industrial computer simulators have

significant advantages in training employees. At the same time,

conformity of modelled workplaces with a real workplace

organized in accordance with the technological process is of great

importance. Traditional methods of software checking – manual

and automatic unit testing – are not always able to fully cover

simulator functionality and test it as soon as possible. Virtual

simulators verification method is proposed. It is based on the

structural and parametric analysis. To determine level of

compliance between virtual and real workplaces the method uses

data from the industrial product life cycle management (PLM)

system.

Keywords—virtual reality, software verification, virtual

simulator

I. INTRODUCTION

Design, implementation and introduction of industrial
products assembly virtual simulators solves the problem of
training and retraining personnel and specialists in a short time
and improving the quality of the training on the job.

During the virtual simulators development [2] [8] [9], one
should adhere to the technical task developed and agreed upon
with the customer and closely related to the technological
process of the modeled subject area, as well as the regulatory
and technical documentation referred to by the technological
process: product specifications, state and industry standards
(GOSTs).

Adding, changing or skipping actions is allowed if and only
if it does not violate the logic of the process. Such
modifications include, for example, radio element
illumination, automatic equipment setup (soldering station
heating).

To check the virtual simulator for its adequacy to a real
workplace, expert testing, automatic or semi-automatic tests
(unit tests based on the "black box" method) are used.
However, if the simulator has large functionality and a
complex block diagram, manual testing and development of
unit tests can take quite a lot of time, and the latter may not
cover all the simulator's functionality.

For the fully automatized testing of such simulators, a
verification method for a virtual workstation simulator is
proposed, based on a structural-parametric analysis of the
simulator contents and its compliance with an external data
source using an ontology.

II. SOFTWARE VERIFICATION

There are the following verification method groups
according to Kulyamin V.V. [11].

A. Expertise

This method is applicable to any software properties and
life cycle artifacts at different stages of a project. At the same
time, different types of expertise can be used for different
purposes: organizational, technical, cross-cutting, inspection,
audit. It allows identifying almost any kind of error, including
at the stage of preparing the corresponding artifact, thereby
minimizing the lifetime of the defect and its consequences for
the quality of derived artifacts. The lack of expertise is the
impossibility of its automation and implementation without the
active participation of people.

B. Static Analysis

These methods check formalized rules for the correct
construction of these artifacts and to search for common
defects according to some patterns. Such an analysis is well
automated and can be almost completely assigned to tools that
are quite convenient to use and do not require special training.
Most of the techniques for static verification of program
correctness sooner or later become part of compilers or even
translate into semantic rules of programming languages.

Static analysis is applicable only to code or certain project
artifacts presentation formats. It can detect only a limited set of
error types. Also, the following dilemma is characteristic:
either strict analysis methods are used that do not allow errors
to be missed (those types that are searched for), but lead to a
large number of messages about possible errors that are not, or
a set of error messages is accurate, but some of them are to be
skipped.

C. Formal methods

These methods use formal requirement models, software
behavior and its environment models for the properties
analysis. It is performed using specific techniques such as
deductive analysis, model checking or abstract interpretation.

Formal verification methods are capable of detecting
complex errors that cannot be detected by examinations or
testing, are actively used in a number of areas where the
consequences of errors can be extremely expensive.

Formal methods are applicable only to those properties that
are formally expressed in the framework of some adequate

mailto:n.voit@ulstu.ru
mailto:bochkovsi@ido.ulstu.ru
mailto:kirillovsyu@gmail.com

mathematical model, as well as to those artifacts for which an
adequate formal model can be constructed.

D. Dynamic methods

Dynamic methods use the results of the actual work of the
program or its model in the properties analysis and evaluation.
These are testing, monitoring, profiling.

To apply dynamic methods, a working system or the
required system components at least at the prototype level must
exist. The backward of dynamic methods is that they detect in
the software only runtime errors, and, for example,
convenience or maintenance defects cannot be detected.
However, using dynamic methods helps to control the software
characteristics and track errors in a real environment, which
cannot be accurately investigated using other approaches.

E. Synthetic methods

Currently, there are research works and tools using several
verification methods listed above. Dynamic methods using
formal elements were distinguished in separate areas such as
models-based testing [12] and monitoring formal properties.
Test building tools make significant use of both formalization
of some software properties and static code analysis. The
general idea of synthetic methods is a combination of the
advantages of the basic approaches to verification, minimizing
their shortcomings.

Comparison of methods is shown on the Table I.

TABLE I. VERIFICATION METHODS COMPARISON

Methods

group

Ability to

automatize

Concerned

software

development

steps

Threshold Applicable

to the

current

problem?

Expertise Very low Any High +/-

Static
analysis

High Source code Middle -

Formal

methods

High Requirements,

behavior

High +

Dynamic
methods

High Run-time
testing

Low +

Synthetic

methods

Above

average

Any, mostly

some and

simultaneously

Middle +

From the table results it follows that the developed
verification method should belong to the synthetic methods
group combining features of formal and dynamic methods.

III. RELATED WORKS

There are many means of formal verification of programs
[14], the most famous are the following.

CONC2SEQ plugin is written for the FRAMA-C platform
for verifying parallel C programs [13] [15]. CONC2SEQ
converts the source parallel code to serial for correct operation
in FRAMA-C, while user specifications are automatically
integrated into the new code.

The disadvantage of the plugin is the lack of support for
value analysis and dynamic verification.

Lazy-Cseq is a tool that allows translating a multi-threaded
C program into a non-deterministic sequential code that
preserves reachability for all cyclic traces with a given number

of iterations [16] [17]. It reuses existing high-performance
bounded model checking (BMC) tools. The translation is
carefully designed so that it consumes as little memory and
non-determinism sources as possible, it is also organized
within the framework of strict SAT / SMT formulas. Lazy-
Cseq contains a script linking translation and verification.

Lazy-Cseq accepts a C program using POSIX streams as
input; verification is done using Lazy sequentialization,
working both with partial store order (PSO) and total store
order (TSO) memory.

Java Pathfinder was originally created as a means of
checking a model with an explicit state for Java bytecode [18].
In this way, it can test the model of programs written in
languages oriented to the Java virtual machine. The initial
implementation approach was to convert Java bytecode to
Promela for analysis using the Spin model validator [19].
Currently, Java Pathfinder checks Java bytecode directly.

Java PathFinder is used to analyze parallel programs and
abstract models, including applications on the Android
platform [21].

The plugin architecture allows the user to expand the type
of properties being checked. They are implemented in the form
of user code with a listener model for checking user properties
when examining a state space. However, the state space
exploration algorithm does not take into account the type of
custom properties and cannot configure the search to be
effective for these properties. In its purest form, Java
PathFinder looks for deadlocks, statement errors, and null
pointers.

The disadvantages include the limited size of the programs
that can be analyzed, approximately 10 thousand lines of code.
Due to these limitations, it is used to analyze small libraries and
program fragments.

Malpas (MALvern Program Analysis Suite) is a toolset for
software analysis [20], which allows performing static analysis
and program compliance with specifications. The analyzed
program should be written in the Malpas intermediate language
(MIL), while there are automatic translators from common
programming languages and assembler to MIL.

Static analysis tools allow removing code metrics,
analyzing the program for dead code, uninitialized data,
unexpected dependencies, etc. Formal analysis tools verify the
mathematical compliance of the program specifications,
including pre- and postconditions, invariants, statements.

IV. TEST METHOD

The virtual workplace model has the following form:

Workstation simulator = (assembly objects set;
consumables set; tools set; documents set; target assembly
object; technological process), where:

Assembly object = (key-value pairs set),

Consumable = (key-value pairs set),

Document = (name; assembly object or consumable; key-
value pairs set),

Tool = (key-value pairs set).

The target assembly object is the state of the assembly
object(s) characterizing completed assembly of a particular
product.

Technological process = (main operations, intermediate
operations), where:

Main operation: assembly objects × materials × tools ×
documents → assembly objects × materials × tools – an
operation changing the state of assembly object(s).

Intermediate operations = (tool activation / deactivation;
object activation / deactivation; material activation /
deactivation), where:

Tool activation / deactivation: tool → tool – active tool
changing operation,

Object activation / deactivation: assembly object →
assembly object – active assembly object changing operation,

Material activation / deactivation: consumable →
consumable – active consumable changing operation.

The data source for testing on accordance with the technical
task is the industrial product life cycle management system
(PLM) [10]. Figure 1 shows the data organization in PLM
formed as a classification ontology.

Assembly objects

Resistors Capacitors Transistors

S2-33

S2-33N

R1-40

K10-17A

K10-17B

K10-17A

2P350A

2P350B

2T608A

Documentation

TR OSTs GOSTs

ОЖО.467.093 ТУ

АБШК.434110.026 ТУ

Fig 1. Ontological data model in PLM

Figure 2 presents diagrams explaining the operation of
the method of structural-parametric verification of a virtual
workplace (VWP).

VWP

Assembly

objects

Consumables
Tools

PLM

Assembly objects

Consumables

Tools

Technological

process

Operation 1

Operation2

Operation 3

Operation N

Technological

process

Operation 1

Operation 2

Operation 3

Operation N

VWP.AssemblyObjects

PLM.AssemblyObjects

d1

VWP.Tools

PLM.Tools

d2

VWP.Consumables

PLM.Consumables

d3

VWP.TechnologicalProcess

PLM.TechnologicalProcess

d4

Fig 2. Virtual workplace (VWP) verification process block diagram

The verification process includes the following
subprocesses:

 correspondence degree of assembly objects in VWP

to assembly objects specified in the specification

(𝑑1 =
𝐴𝑂𝑉

𝐴𝑂𝑃𝐿𝑀
, where 𝐴𝑂𝑉 is the VWP assembly

objects count specified in the specification from

PLM, 𝐴𝑂𝑃𝐿𝑀 is the assembly objects count specified

in the specification in PLM) ;

 correspondence degree of tools in VWP to tools

specified in the specification (𝑑2 =
𝑇𝑉

𝑇𝑃𝐿𝑀
, where 𝑇𝑉 is

the VWP tools count specified in the specification

from PLM, 𝑇𝑃𝐿𝑀 is the tools count specified in the

specification in PLM);

 correspondence degree of consumables in VWP to

consumables specified in the specification (𝑑3 =
𝐶𝑀𝑉

𝐶𝑀𝑃𝐿𝑀
 where 𝐶𝑀𝑉 is the VWP consumables count

specified in the specification in PLM, 𝐶𝑀𝑃𝐿𝑀 is the

consumables count specified in the specification in

PLM);

 correspondence degree of the technological process

operations content and ordering in VWP to the

technological process stored in PLM (𝑑4 =
𝑂𝑉

𝑂𝑃𝐿𝑀
,

where 𝑂𝑉 is the technological process steps count

embedded in the VWP, which, starting from the first,

correspond to the technological process steps

indicated in the documentation in PLM, 𝑂𝑃𝐿𝑀 is the

technical process steps count in the documentation in

PLM).

The result of VWP testing is the correspondence degree
value 𝐷 equal to the minimum of the subprocesses execution
results, i.e. 𝐷 = 𝑚𝑖𝑛 (𝑑1, 𝑑2, 𝑑3, 𝑑4).

V. CONCLUSION

Due to the impossibility of manual expert testing of a
virtual workplace simulator or automatic unit testing
covering all the simulator's functional capabilities and the
lack of suitable tools, new verification method based on
sources governing the real workflow process is developed.

The method allows automatically verify virtual
workplace in such aspects as count and nomenclature of the
objects set including assembly objects, tools and
consumables. It also verifies technical process whether it
matches real one and has the same order like in the
manufacturing.

For this method, a virtual workplace model is proposed
that intensively uses the “assembly object”, “tool”, and
“consumable material” concepts.

The developed method is universal and suitable for
virtual workplaces regardless of the working position subject
area.

ACKNOWLEDGMENTS

The reported research was funded by the Ministry of
Education and Science of the Russian Federation, project
No. 2.1615.2017/4.6.

The reported research was funded by Russian
Foundation for Basic Research and the government of the
region of the Russian Federation, grant № 17-07-01417.

The reported research was funded by Russian
Foundation for Basic Research and the government of the
region of the Russian Federation, grant № 18-47-730032.

REFERENCES

[1] M. H. Abidi, A. Al-Ahmari, A. Ahmad et al. “Assessment of virtual
reality-based manufacturing assembly training system”. Int J Adv
Manuf Technol, pp. 1-17, May 2019.
DOI=https://doi.org/10.1007/s00170-019-03801-3

[2] A. Afanasyev, T. Afanasyeva, S. Bochkov, and N. Voit. “Application
of virtual reality technology in the learning process”. In Proceedings
of 10th annual International Conference on Education and New
Learning Technologies (Barcelona, Spain, July 02 – 04, 2018).
EDULEARN18. IATED, Palma, Spain, 10220-10225.
DOI=https://doi:10.21125/edulearn.2018.2485

[3] A. M. Al-Ahmari, M. H. Abidi, A. Ahmad, and S. Darmoul.
“Development of a virtual manufacturing assembly simulation
system”. Advances in Mechanical Engineering, 8, 2, March 2016, pp.
1-13. DOI=https://doi.org/10.1177/1687814016639824

[4] C. Trakunsaranakom, S. Butdee, F. Nöel, and P. Marin. “Product
design review in a virtual reality environment”. KMUTNB Int J Appl
Sci Technol, 11, 2, April-June 2018, pp. 137-149.
DOI=https://doi.org/10.14416/j.ijast.2018.04.004

[5] A. Neumayr, and M. Otter. “Algorithms for Component-Based 3D
Modeling”. In Proceedings of the 13th International Modelica
Conference (Regensburg, Germany, 04 - 06 March 2019). IMC’19.
Linköping University Electronic Press, Linköpings Universität. 13th
International Modelica Conference, 383-392.
DOI=https:///doi.org/10.3384/ecp19157383

[6] F. Noël, and D. Dori. “Towards 3D Visualization Metaphors for Better
PLM Perception”. In: PLM 2015: Product Lifecycle Management in
the Era of Internet of Things, A. Bouras, B. Eynard, S. Foufou, K.D.
Thoben, Eds. IFIP Advances in Information and Communication
Technology, vol 467. Springer, Cham, pp. 461-475, 2016.
DOI=https://doi.org/10.1007/978-3-319-33111-9_42

[7] C. Trakunsaranakom, F. Noël, and P. Marin. “Assessment of Virtual
Reality Environments for design activities”. In EvroVR2014 -
Conference and Exhibition of the European Association of Virtual and
Augmented Reality, J. Perret, V. Basso et al. Eds. The Eurographics
Association, pp. 31-37, 2014.
DOI=http://dx.doi.org/10.2312/eurovr.20141336

[8] S. Bochkov. “Virtual radio technical workplaces development on the
example of wiring harness assembly”. In Proceedings of 10th All-
Russian School-Seminar of Postgraduates, Students and Young
Scientists "Information Systems, Computer-Aided Design" (ISCAD-
2018). (Ulyanovsk, Russia, November 27 – 28, 2018). ISCAD ’18.
UlSTU, Ulyanovsk, Russia, pp. 67-78.

[9] N. Voit, D. Kanev, S. Bochkov, and M. Ukhanova. “Development of
Trainee Actions Evaluation Software in Virtual Environment Based
on Expert System”. In: Proceedings of 5th International Conference
“E-Learning in Continuing Education-2018”. (Ulyanovsk, Russia,
April 18 -20, 2018). EONO ’18. UlSTU, Ulyanovsk, Russia, pp. 151-
159.

[10] M. Ukhanova. “Ontology-Based Organizational and Technical
Components Semantic Model Development”. Information and
measuring and control systems, 1, 11, pp. 98-108, November 2018.
DOI=https://doi.org/10.18127/j20700814-201811-16

[11] Kulyamin, V.V. Software verification methods. Ivannikov Institute
for System Programming of the RAS, Moscow, 2008.

https://doi.org/10.1007/s00170-019-03801-3
https://doi:10.21125/edulearn.2018.2485
https://doi.org/10.1177/1687814016639824
https://doi.org/10.14416/j.ijast.2018.04.004
https://doi.org/10.3384/ecp19157383
https://doi.org/10.1007/978-3-319-33111-9_42
http://dx.doi.org/10.2312/eurovr.20141336
https://doi.org/10.18127/j20700814-201811-16

[12] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner.
Model Based Testing of Reactive Systems. LNCS 3472, Springer-
Verlag Berlin, Heidelberg, 2005.

[13] Frama-C: https://frama-c.com/index.html

[14] R. C. Armstrong, R. J. Punnoose, M. H. Wong, J. R. Mayo. Survey of
Existing Tools for Formal Verification. Technical Report. Sandia
National Laboratories, 2014.

[15] A. Blanchard, N. Kosmatov, M. Lemerre, and F. Loulergue.
“Conc2Seq: A Frama-C Plugin for Verification of Parallel
Compositions of C Programs”. In 2016 IEEE 16th International
Working Conference on Source Code Analysis and Manipulation
(SCAM) (Raleigh, NC, USA , October 02-03 2016). SCAM ’16.
IEEE, Los Alamitos, CA, pp. 767-772, 2016.
DOI=https://doi.org/10.1109/SCAM.2016.18

[16] E. Tomasco, T. L. Nguyen, O. Inverso, B. Fischer, S. La Torre, and
G. Parlato. “Lazy sequentialization for TSO and PSO via shared
memory abstractions”. In Proceedings of the 16th Conference on
Formal Methods in Computer-Aided Design. (Mountain View,
California, October 03 - 06, 2016). FMCAD ’16. FMCAD Inc, Austin,

TX, pp. 193-200, 2016. DOI=
https://doi.org/10.1109/FMCAD.2016.7886679

[17] C Sequentialisation Tool for Software Verification:
https://www.southampton.ac.uk/~gp1y10/cseq/

[18] K. Havelund, and T. Pressburger. “Model checking JAVA programs
using JAVA PathFinder”. International Journal on Software Tools for
Technology Transfer, 2, 4, pp. 366-381, March 2000.
DOI=https://doi.org/10.1007/s100090050043

[19] K. Havelund. Java PathFinder: A Translator from Java to Promela. In
Proceedings of the 5th and 6th International SPIN Workshops on
Theoretical and Practical Aspects of SPIN Model Checking, vol.
1860. (London, UK, August 27, 1999). SPIN ’99. Springer-Verlag
Berlin, Heidelberg, pp. 152-152, 1999.
DOI=https://doi.org/10.1007/3-540-48234-2_11

[20] MALPAS: http://malpas-global.com/

[21] A. Kohan, Y. Mitsuharu, C. Artho, Y. Yoriyuki, M. Lei, H. Masami,
and T. Yoshinori. “Java Pathfinder on Android Devices”. ACM
SIGSOFT Software Engineering Notes, 41, 6, pp. 1-5, November
2016. DOI=https://doi.org:10.1145/3011286.3011292

https://frama-c.com/index.html
https://doi.org/10.1109/SCAM.2016.18
https://doi.org/10.1109/FMCAD.2016.7886679
https://www.southampton.ac.uk/~gp1y10/cseq/
https://doi.org/10.1007/s100090050043
https://doi.org/10.1007/3-540-48234-2_11
http://malpas-global.com/
https://doi.org:10.1145/3011286.3011292

