)

Check for
updates

The Method of Translation
of the Diagram with One Type Directed
Links into the Inhibitor Petri Net

Nikolay Voit@®, Dmitry Kanev, Sergey Kirillov®?,
and Maria Ukhanova

Ulyanovsk State Technical University, Ulyanovsk, Russia
n.voit@ulstu. ru, dima. kanev@gmail. com,
kirillovsyu@gmail. com, mari-u@inbox. ru

Abstract. The fundamental scientific problem of the business process man-
agement theory is to increase the efficiency of automated systems workflow
synthesis and processing in order to reduce the time spent on their development,
increasing the success of processing diagram models, namely the implementa-
tion of the requirements for resource constraints, functionality, financial com-
ponent and deadlines, as well as improving the diagram models quality in terms
of error control, narrowing the semantic gap between business process analysis
and execution. The article proposes a method of translation of the diagram with
one type of directed communication into the Petri inhibitor network. The results
of the research represent that the approach has significant advantages over
similar methods of analysis. The effectiveness of this analytical approach is
proved by concrete real and relevant examples.

Keywords: Business processes - Graphical language analysis - EPC -
Petri net component

1 Introduction

In modern practice of organizational management, graphical models of business pro-
cesses have become widespread. However, graphical models research, even carried out
in accordance with the rules of the structural approach (limited context, limiting the
number of elements at each level of decomposition, etc.), presents considerable com-
plexity. Therefore, a mandatory step in the modeling of business processes of enter-
prises is the automatic verification of the models obtained. The issues of analysis of
defect-free completion are relevant, since the complexity of models is constantly
increasing, and the test tools built into the simulation environment are far from perfect.

The main goal of this work is to reduce the time to develop graphical models of
business processes and improve their quality by expanding the class of diagnosed
errors.

Petri net is one of the approaches for it. Since its inception in 1962, Petri nets have
been used in a wide variety of applications. Although Petri nets are graphical and easy
to understand, they have formal semantics and allow analysis methods from model

© Springer Nature Switzerland AG 2019
S. Misra et al. (Eds.): ICCSA 2019, LNCS 11623, pp. 562-572, 2019.
https://doi.org/10.1007/978-3-030-24308-1_45

http://orcid.org/0000-0002-4363-4420
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24308-1_45&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24308-1_45&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24308-1_45&domain=pdf
https://doi.org/10.1007/978-3-030-24308-1_45

The Method of Translation of the Diagram 563

checking and structural analysis to process and performance analysis. Over time, Petri
nets have become a solid foundation for research in the field of business process
management. Petri nets allow semantic and syntactic models analysis. In particular, to
obtain all possible scenarios for the business process execution, to determine never-
executing functions and system deadlocks, which is especially important when ana-
lyzing cyclic processes.

At the same time, the existing methods for translating graphical diagrams of
business process management into the Petri net are specialized and aimed at working
with one or two graphical languages.

2 Analysis of Existing Approaches

In article [1], the rules for the transformation of UML activity diagrams in the Petri net
are considered and an algorithm for their implementation is proposed. The waiting state
is transformed into a position, the action state is transformed into a transition. The
separation and merging of control, branch and condition flows is converted into the
corresponding Petri net; constraint conditions are represented using transition con-
straint conditions.

Practically in each developed system one can meet the sequence and condition,
branching and merging. Consequently, one of the advantages of the described rules
seto is that it contains recommendations for the mutual obtaining of the more frequently
encountered elements in the UML activity diagrams and Petri nets algorithms. Algo-
rithmic rules presentation contributes to their formalization.

In the article [2] the technique of software design using UML-diagram and Petri net
consisting of 7 stages is considered:

1. Compilation of a case diagram with the identification of all entities in the form of
actors and use cases.

2. Drawing a class diagram and highlighting the class methods.

3. Selection based on the class diagram of objects that are involved in the system and
will help determine the initial values for marking all the vertices of the Petri net.

4. Construction of activity diagrams to describe the dynamic properties of the system.

5. Translation of the constructed activity diagram into the Petri net using formal
transformation rules.

6. Analysis of properties using automated software packages for working with Petri
nets, which allow identifying logical errors in modeling activity diagrams: finding
unused work scenarios, identifying dead-end branches of algorithms, etc. For
classes or objects that need detailed elaboration of their logic, a separate activity
diagram should be drawn up and analyzed using Petri nets. If necessary, the
dynamics of work should be tracked on the state of the system. This is possible
using Petri nets apparatus, whose analysis results will be the basis of the state space
construction and exploration.

7. In case of successful analysis and set of diagrams that do not need to be improved,
the simulated diagrams are ready for automatic code generation.

564 N. Voit et al.

In [3], the converting UML diagrams into Petri nets rules are given. These are the
following.

1. The waiting state is transformed into a position, and the action state is transformed
into a transition that starts the action. It is possible that two states of the action are
arranged in series, then the end of the first and the beginning of the second action
are combined and shown by one transition.

2. Separation and merging of parallel control flows of UML diagrams is converted to
the corresponding Petri net equivalent.

3. The branch in the activity diagram, denoted by the decision symbol, is converted to
the corresponding Petri net equivalent.

4. Restriction conditions are shown with transition restriction conditions.

5. The critical section (access to the critical resource realized by the critical section) is
converted to a position with one mark in the initial marking. When a critical section
is executed, the label is removed from the position and returns upon completion of
the critical Sect.

6. The semaphore used to simulate the employment of a specific resource from the
resource pool is converted to a position with the same number of labels that differ
from each other in colors in the initial labeling. A label with an arbitrary index
should be removed from the site and returned when it is no more used. In a simple
semaphore, labels of the same type must be used, and their number in the initial
marking is equal to the number of resources.

7. Tt is necessary to add a counter-position to the sections that are critical in terms of
execution time. To check the maximum execution time of the transitions of the
critical section, you must add protective conditions. The counter must be provided
with a transition with the opposite protective condition.

8. In case of mutual transition from or to the hierarchical Petri net, it is necessary to
add empty spaces and corresponding transitions, which are connected in series.

The goal of [4] is to describe the method of (H)MSC diagrams into the Petri net
translation and apply the method for formal analysis and verification of the properties
of such diagrams. The algorithm result is the Petri net in a format compatible with the
CPN Tools system. This net will be hierarchical if the source specification is specified
using the HMSC diagram, or if the input MSC contains reference expressions.

Message sequence diagrams (MSC diagrams) are popular scripting language
designed to formalize and analyze system requirements during the software design
phase. In this paper, the syntax of the SDL-2010 language is used to describe decla-
rations and expressions with data.

General description of the translation algorithm is considered. At the first stage, the
input (H)MSC-diagram builds its internal representation, which will be called the
partial order graph (H)MSC. For each event in the diagram, a node is created in the
partial order graph, which stores information about the set of adjacent nodes, the
process identifier and the structural structure to which the event belongs.

The Method of Translation of the Diagram 565

In stage 2, the partial order graph is processed. During processing, such actions as
auxiliary graph nodes creation (input and output nodes for MSC embedded expres-
sions), links unfolding (constructing partial order graphs for referential MSC),
searching and processing alternatives with non-local choice occur.

At stage 3, the processed graph of partial order is transmitted to the Petri net (CPN).
Each node of the graph corresponds to the transition to CPN. Each arc connecting two
nodes in a partial order graph corresponds to a position and two oriented arcs con-
necting two transitions in the CPN. The orientation of the constructed network arcs
coincides with the orientation of the arcs of the partial order graph. The event execution
in MSC corresponds to the triggering of the corresponding transition in the resulting
CPN. The start events of the MSC-diagrams correspond to transitions with input start
sites with an initial marking of 1’(). The MSC-diagrams correspond to eventual tran-
sitions with output end places that do not contain outgoing arcs. All data types and
variables declared in the MSC document are converted to the corresponding data types
and CPN ML variables.

Each event from the base set of MSC elements is modeled by a single CPN
transition. According to the MSC standard, the event of receiving a message is pre-
ceded by the event of its sending. Each message is modeled by two transitions in CPN.
The order of transitions corresponding to the events of sending and receiving a message
is observed with the help of a place that connects these transitions and ensures the
correct sequence between their operations.

Predicative (guarding) conditions are used to check in the process of executing the
truth diagram of a predicate specified in the MSC data language. Such conditions can
be placed at the beginning of an inline expression or MSC diagram.

If the test condition is false, then the execution of chart events that follow the
protection condition is terminated. In the process of translation, each predicate con-
dition is transformed into a single transition of a network with a trigger function that
calculates the value of the established predicate.

The article describes the translation of the basic elements of the MSC, MSC ele-
ments with data, structural elements. The resulting CPN size estimation is also
proposed.

The article [5] proposes formal semantics for mapping the business process mod-
eling (BPMN) notation to color Petri nets. The choice of CPN is due to the presence of
formal verification methods, analysis of the space of states and invariants. And the
concept of colored markers allows you to model the process data.

The elements analyzed are limited to the core BPMN, and include the following
types. Common elements that are used in several types of diagrams (for example,
“Process”, “Interaction”, “Choreography”’). Common elements provide model devel-
opers with the ability to display additional information about the process, such as
operations, error detection, and resources. The CPN ML declaration, corresponding to
the standard BPMN 2.0 structure diagram, is considered. These declarations allow
converting BPMN elements and their attributes one-on-one to Petri Net. Gateways are
used to control the actions flows. The article uses the matrix display of various types of

566 N. Voit et al.

gateways to the corresponding Petri nets. BPMN tasks are matched with CPN ML ads.
The CPN ML color set is created for each type of BPMN task in order to cover all of its
optional attributes. In BPMN, an action can have attributes that define its optional
behavior, such as looping and parallel loops on objects. The article proposes replacing
them with a flow control construct using various types of gateways. A hierarchical CPN
is used to represent the BPMN sub process. Each subprocess is represented as an
embedded Petri net. A reusable task is a task definition that can be invoked from any
process using a call operation. In CPN, a reusable task and its challenge is modeled
using nested Petri nets.

The article [6] considers only a limited subset of the BPMN notation used to model
orchestration processes. The nodes of the diagram are the control flow objects, including:
operations, logical operators, and events. The difference of the proposed approach in the
rejection of behavioral equivalence, which will simplify the display method.

The proposed approach distinguishes between nodes that produce a change in the
management object, leading to a change in its state and nodes that do not change it, but
route it. Operations transform the process object, they are associated with transitions.
The arcs define the order in which the process operations are executed.

Logical branching and merging operators, such as AND, OR, are modeled by an
equivalent Petri net. The BPMN notation allows for an “abbreviated” notation when
one graphic element combines an operation and a logical operator at the same time. For
analysis, such elements are expanded into a separate operation and a logical operator.
Cyclic execution of the operation is modeled by a pair of transitions. The first is
responsible for carrying out the work, and the second is for checking the condition.

Start, end and intermediate events placed in the stream are modeled by the Petri Net
transition. Events attached to the boundaries of operations are modeled by the logical
operators “OR”/“AND” depending on whether the event stops the flow of control or
not.

Based on the review, we can conclude that a single approach is used to translate
various types of diagrams into the Petri net: sequential transformation of the elements
of the diagrams into equivalent subsets of the Petri nets. At the same time, the existing
methods of translating graphic diagrams are specialized and aimed at working with
one/two graphic languages.

3 Diagram to Inhibitory Petri Net Translation

Consider the task of translating some diagram into the inhibitor Petri net. The input
parameter is a diagram, the diagram model has the form [7-12]:

G = (V,E,TV,TE),

The Method of Translation of the Diagram 567

Where

V is vertices set,

E is connections set, E C (V x V)
TV is vertices types set,

TE is connections types set.

Restriction on the input data is assumed that the diagram may contain only one type
of directional communication, which corresponds to an edge in Petri nets.
At the output, an inhibitor Petri net is obtained, the model of which has the form:

N=(P, T F), e

P is positions set,

T is transitions set,

F is arcs set, F C (P x T X ING) U (T x P x ING), ING = {0,1} is an inhibi-
tory arc attribute.

The input diagram vertices are translated on the Petri nets that implement the
equivalent function. Inhibitor Petri net is Turing complete, which allows to implement
any computable function on it. The unidirectional communication diagram is translated
into the corresponding arc of the Petri net.

Displaying algorithm is the following.

Step 1. Defining the function of translating the top of the diagram into the extended
Petri net.

For each type of diagram, it is necessary to define the function of translating the top
of the diagram into the extended Petri net model (Ftrans : V — VN). Extended Petri
net model has the following view:

VN = (V,N, PIN, TOUT),

where

V is a diagram vertex,

N is Petri net,

PIN is input positions tuple,
TOUT is output positions tuple.

For each incoming connection v there must be an input position in the Petri net
vn[N] and for each outgoing connection there must be a transition.

Step 2. Formation of a set of extended Petri nets.

For each vertex v € V of the diagram g € G translation to the extended Petri net
van € VN is formed and AVN set is formed:

AVN = {Ftrans(v)|v € V}

Step 3. Consolidation of multiple extended Petri nets into the output Petri nets.
Let pn be the empty Petri net (3, (), #). Copy all the arcs, positions and transitions of
all extended Petri nets into pn:

568 N. Voit et al.

pnlP| = {pl3a € AVN, p € alN|[P]},
pn|T] = {#|3a € AVN, t € a[N][T]},
pn[F] = {f|3a € AVN, f € a[N][F)

Step 4. Translation of diagram connections.

Based on each connection of the e € E of the diagrams, we connect the positions
and transitions of the output Petri net. For each connection, the initial and final vertices
and the corresponding extended Petri nets val € VN, vn2 € VN are found. From the
output transitions tuple for v/ the transition corresponding to the chosen connection is
found, from the input positions tuple for v2 the position corresponding to the selected
connection is found. Selected output transition and input position are connected with an
arc:

pn[F] = pn[F] U {(vn_in[TOUT][e], vn_out[PIN][¢],0) |Ve € E,
Jvn_in € AVN, Jvn_out € AVN, va_in[V] =el, vn_out[V] = e2}.

Figure 1 shows diagram translation example. Petri nets PI, P2, P3, P4 match
vertices VI, V2, V3, V4. They are interconnected with arcs Al, A2, A3, A4, A5 cor-
responding connections El, E2, E3, E4, E5. For VI and V2 connection the arc is
created, outgoing from the transition 7/ of the network P/ and entering the position p/
of the network P2.

Inhibitory
Pelri net P2

t1 °
1 \1\
Inhibitory 5

Petrinet P1 A

@i s, [::> , Inhibitory
Pelri nel P3
\M
N \Q
)
@ ;

Inhibitory
Pelri nel P4

Fig. 1. Diagram to Petri net translation

4 EPC-Diagram Management Stream to Petri Net
Translation

Event Chain Process (EPC) is type of diagrams used for modeling, analysis and
reorganization of business processes. At the same time, EPC-diagrams can be used to
simulate the behavior of individual parts of the system when implementing functions

The Method of Translation of the Diagram 569

and serve as a replacement for traditional flowcharts (behavioral modeling). The EPC
method was developed by Augusto-Wilhelm Scheer in the early 1990s.

Consider broadcasting EPC charts. The model for the EPC notation consists of
many types of vertices TV = {Event, Function, Information, Document, File, Cluster,
Object Set, Message, Product, Organizational Unit, Position, Artist, Location, Appli-
cation, Module, AND, OR, XOR, Purpose, Term}, and many types of connections
TE = {Control flow, Organizational flow, Resource flow, Information flow, Informa-
tion service flow, Inventory flow}. The following types of vertices are directly
responsible for the control flow: Event, Function, AND, OR, XOR; and communication
type: Control flow. Thus, the flow of control of the EPC-diagram fits the limitations of
one type of communication. We define the function of translating the top of the
diagram into the extended Petri net model (see Table 1).

Table 1. EPC-diagrams elements to extended Petri nets translation

Element Graphical symbol Extended Petri net
Function
P1 : 1 T2 I
PIN = (P1)
TOUT= (T2)
OR operator
(merging) J

PIN = (PS5, P6)
TOUT= (T13)
XOR operator -
(merging) 1719
@ ! ps J10
Ps
PIN = (P7, P6)
TOUT= (T10)

For each diagram element, Petri nets are built in accordance with Table 1, and
interconnected.

Since this approach uses semantic formalization of semi-formal languages due to
the specialization of these languages, there are limitations.

570 N. Voit et al.

It is necessary to abandon some of the features of the translated language, simplify
it, give it new features, etc., which will have a positive impact on the formalization.
Bring the language to a state where ambiguity disappears.

5 Implementation

The proposed method is implemented on the.NET Framework 4.5 platform for trans-
lating EPC diagrams from Microsoft Visio 2017 to the Petri network for the Platform
Independent Petri Net Editor.

The algorithm of the program consists of the following steps.

— connect to a running copy of Microsoft Visio;

— read the EPC-diagrams elements and relationships between them;

— consistently convert each element of the EPC-diagrams into an equivalent extended
Petri net in accordance with the translation function of the diagram vertices;

— connect extended Petri nets into a single Petri net based on the original EPC
diagram links;

— save the received Petri net in the Platform Independent Petri Net Editor format;

— show the received Petri net on the screen.

The developed tool has the following features: translation of EPC-diagrams built in
Microsoft Visio, including the highlighted part of the diagram; output of the received
Petri net to the screen with support for saving the image to a file, automatic positioning
of elements, scaling and printing; save the Petri file in Platform Independent Petri Net
Editor format.

The Fig. 2 shows the diagram in the visual language EPC, taken for translation
example. In the Fig. 3 you can see the resulting equivalent of the original EPC dia-
grams in Petri.

. /\‘/\QRI -
b4

y
F1 P2 I
OR2
-R44r@a—ﬂs‘
R6

Fig. 2. The source EPC diagram in MS Visio

The Method of Translation of the Diagram 571

ala |0« - | &aE/Ee] sl

:>.:>O-—-*—O‘—.‘—O

~—@—O-—a—O)
O-—a—O-—a-—0O

s

aO-—a—O-aO

Fig. 3. The result diagram on Petri net

6 Conclusion

The article deals with the task of translating various types of diagrams into the
inhibitor-Petri nets. A universal method of translation of a diagram with one type of
directional communication is described, the models of a diagram, an inhibitor Petri net,
and a translation algorithm are described. The application of the method for translating
the flow of control of an EPC diagram consisting of 8 types of elements into a Petri net
is shown, and examples of the translation of various diagrams are given. As an
experiment, the algorithm was tested in other most well-known visual languages of
business processes, such as BPMN, IDEF3, and successfully achieved its goal.

Acknowledgements. The study was supported by the Russian Foundation for Basic Research
No. 17-07-01417 and the regional support of the Russian Foundation for Basic Research, grant
No. 18-47-730032.

572

N. Voit et al.

References

10.

11.

12.

. Markov, A.V., Romannikov, D.O.: Algorithm for automatic translation of the activity

diagram into the Petri net. Rep. Acad. High. Educ. Russ. Fed. 1, 104-112 (2014)

. Voevoda, A.A., Markov, A.V.: CAD methods for complex systems based on the combined

use of UML-diagrams and Petri nets. Modern technologies. Syst. Anal. Model. 2(42), 110-
115 (2014)

. Markov, A.V.: Software development by sharing UML diagrams and Petri nets (overview).

Scientific papers oft he Novosibirsk Stet Technical University 1(71), 96-131 (2013)

. Chernenok, S.A., Nepomnyaschiy, V.A.: Analysis and verification of MSC-diagrams of

distributed systems using expanded Petri nets. Model. Anal. Inf. Syst. 6(21), 94-106 (2014)

. Ramadan, M., Elmongui, H.G., Hassan, R.: BPMN formalisation using coloured petri nets.

In: Proceedings of the 2nd GSTF Annual International Conference on Software Engineering
& Applications (SEA) (2011)

. Fedorov, I.G.: The method of displaying the executable model of a business process on the

Petri net. Stat. Econ. 4, 179-183 (2013)

. Afanasyev, A.N., Voit, N.N., Ukhanova, M.E., Ionova, LS., Epifanov, V.V.: Analysis of the

design and technological workflows in a large radio-technical enterprise. Radiotechnics 6,
49-58 (2017)

. Afanasyev, A.N., Voit, N.N.: Intelligent agent-based system for analysis of design work flow

models. Autom. Control. Process. 4(42), 52-61 (2015)

. Afanasyev, A.N., Voit, N.N., Gainullin, R.F., Brigadnov, S.I., Horodov, V.S., Sharov, O.G.:

RV grammatics metacompiler. Proc. Ulyanovsk State Tech. Univ. 4(76), 48-52 (2016)
Afanasyev, A.N., Voit, N.N.: Grammar-algebraic approach to the analysis and synthesis of
diagrammatic models of hybrid dynamic flows of design works. Inf. Meas. Control Syst. 12
(15), 69-78 (2017)

Afanasyev, A.N., Voit, N.N., Ukhanova, M.E.: Monitoring and analysis of denotative and
significative semantic errors of diagrammatic workflow models in the design of automated
systems. Radiotechnics 6, 84-92 (2018)

Voit, N.N.: Methods and tools for automating workflow design. Inf. Meas. Control Syst. 11
(14), 84-89 (2018)

	The Method of Translation of the Diagram with One Type Directed Links into the Inhibitor Petri Net
	Abstract
	1 Introduction
	2 Analysis of Existing Approaches
	3 Diagram to Inhibitory Petri Net Translation
	4 EPC-Diagram Management Stream to Petri Net Translation
	5 Implementation
	6 Conclusion
	Acknowledgements
	References

