
Timed automaton RVT-grammar for workflow

translating

Alexander Afanasyev, Nikolay Voit[0000-0002-4363-4420], Sergey Kirillov

Ulyanovsk State Technical University, Ulyanovsk, Russia

{a.afanasev,n.voit}@ulstu.ru, kirillovsyu@gmail.com

Abstract. The paper studies grammar for workflow translating including seman-

tic analysis. The main purpose of the translation is to expand the methods of se-

mantic analysis of the grammatical model of distributed workflows due to the

capabilities of the translation language. The article describes grammar, algorithm

of its construction, differences from usual RV-grammar and author's modifica-

tions. At the end of the work the result of the experiment of translating the BPMN

language diagrams into a temporary Petri net is presented.

Keywords: Automated Systems, Diagrammatic Models, Workflows, Automa-

ton Grammars, Timed petri nets, Diagram Translation

1 Introduction

Large manufacturing enterprises have complex business processes. Management of

business processes while providing customers with services and products has become

key for such enterprises [9]. As a rule, the analysis of a large amount of information is

necessary for decision-making by the manager. It uses data mining, data warehousing,

on-line analytical processing to obtain unbiased useful information [5]. In most cases,

the presentation format of business processes (for example, BPMN, IDEF3, eEPC)

should be translated into a modeling format that is understandable for modeling tools

[11]. When analyzing business processes for errors, designers are forced to translate the

internal representation of the system work flows into a view that is suitable for model-

ing [8]. Diagrammatic model of visual modeling languages (e.g. UML [1], IDEF [2],

eEPC [3], BPMN [4], SharePoint, ER, DFD) are widely used in the practice of design-

ing complex automated systems (as) especially at the conceptual stage [5]. Such lan-

guages are flexible and allow you to build diagrams that can be applied to different

subject areas. The flexibility of languages is due to the incompleteness or informality

of their description, as a result of which the resulting diagrams can be interpreted am-

biguously. Machine processing of such graphic diagrams is difficult [11]. Language

flexibility can lead to a family of languages, i.e. many languages that conceptually have

a common basis but different interpretation specific to the subject area of their applica-

tion. Most of the existing approaches consider such languages in isolation, although it

is sufficient to determine the generalizing semantics for the language family (perhaps

2

for some elements it will be abstract) and to specialize the semantic component of the

individual elements of the language and (or) the diagram before its interpretation.

The paper has the following structure. Section 2 has related work that short describes

major relevant research studies. Section 3 provides a brief overview of the semantics

of graphical languages. Section 4 contains RVTITg-grammar. Section 5 presents the

example RVTITg-grammar for basic BPMN. Conclusions and further research direc-

tions are presented in Conclusion.

2 Related Work

The authors investigate some works that consider the specification of document flow,

verification and translation. Several papers focused on the definition of formal seman-

tics and validation methods for workflows using Petri nets, process algebra, abstract

state machine, see for example [12-22]. In [18, 19], Decker and Weske propose a Petri

net-based formalism for determining choreographies, properties as realizability and lo-

cal applicability, and a method for verifying these two properties. However, they con-

sider only synchronous communication and does not explore the association with lan-

guages modeling of interaction of a high-level BPMN. Bultan and Fu [23] determine a

sufficient condition for analyzing the feasibility of choreographies defined using UML

collaboration diagrams (CD). In [24], Salaün and Bultan modify and extend this work

with the feasibility analysis method by adding a synchronization message among peers.

This method controls the realizability of CDs for bounded asynchronous communica-

tion. The feasibility problem for Message sequence diagrams (MSCs) has also been

studied (e.g. [25, 26]). In [26], the authors offer bounded MSCS graphs which are

bounded by BPMN 2.0 because branching and looping behavior are not supported by

CDs and MSCs (there is no selection in CDs, there are no some looping behaviors in

MSCs, and only Self-loops in CDs). In [27] BPMN behavior is studied from the se-

mantic point of view and several BPMN patterns are proposed. This work is not theo-

retically justified and is not complete, it discusses only some of the laws. Lohmann and

Wolf [28] propose to analyze existing patterns and control them with compatible pat-

terns. In [29], the authors focused on the translation of BPMN into the algebra of pro-

cesses for the analysis of choreography using model checking and equivalence. The

main limitation of these methods is that they do not work when there are different types

of diagrams at the same time, which means that in some cases the input diagrams cannot

be analyzed.

3 The semantics of graphical languages

All existing graphic languages can be divided into the following types according to the

language formality:

1. Formal. The syntax and semantics of such languages are formally defined.

2. Semi-formal. The syntax of the language is formal, and semantics can have different

interpretations.

3

3. Informal. The syntax and semantics of the language are informal [6].

The vast majority of popular graphic languages are semi-formal. For them, it is worth

investigating the methods of formalization. In [5, 8, 9, 11, 12-29] mainly offer to give

a semantic technicality language in the following ways:

1. To specialize the language. To give it some capabilities of the language to simplify

it, to give new opportunities that will positively affect formalization.

2. To determine the semantics dynamically. Dynamic semantics involves the transfor-

mation of the diagrams of the basic graphic language into a target language.

The second method is more promising, because it makes it possible to implement dia-

grams of different graphic languages on the basis of one universal tool. The method

develops the ideas of primitive libraries. In this case, libraries store the interpretation

of the graphical image in terms of the target graphic or text language. And there can be

several interpretations for the same image, each of them is assigned a unique name to

avoid ambiguous interpretation and incorrect use. The target language is a more formal

language relative to the base language.

4 RVTITg-grammar

RVTITg-grammar (Timed RV-grammar for graphic translation) is an RVTI-grammar

(Timed RV-grammar [7]) development in which the grammar scheme products are ex-

panded to store the correspondence in terms of the target formal description, and the

internal memory stores the information necessary for the translation process [7, 10].

Temporal RVT-grammar of a language L (G) is an ordered n-tuple of eleventh non-

empty sets

 𝐺 = (𝑉, 𝑈, 𝛴 , �̃�, 𝑀, 𝐹, 𝐶, 𝐸, 𝑅, 𝑇, 𝑟0) (1)

where 𝑉 = {𝑣𝑒 , 𝑒 = 1, 𝐿̅̅ ̅̅̅} is auxiliary alphabet; 𝑈 = {𝑢𝑒 , 𝑒 = 1, 𝐾̅̅ ̅̅ ̅} is auxiliary al-

phabet of the target language; 𝛴 = {𝑎𝑡 , 𝑡 = 1, 𝑇̅̅ ̅̅ ̅} is terminal alphabet graphic lan-

guage; �̃� = {𝑎�̃� , t = 1, 𝑇̅̅ ̅̅ ̅} is quasi terminal alphabet; 𝑀 = 𝑇𝑇 ∪ 𝑇𝑁 is combining ter-

minal (TT) and non-terminal (TN) characters of the target language; F = {generate_in-

put(), generate_output(), select_output(), stick_connection_points()} is many transla-

tion functions for working with elements of the set; C is set of clock identifiers; E is the

set of temporal relations “Before”, “During”, “After” (initialization of the clock {c :=

0}, relations of the form {𝑐 ~𝑥 }, where 𝑥 the variable (the identifier of the clock), 𝑐 is

a constant, ~ ϵ{=,<, ≤,>,≥}); 𝑅 = {𝑟𝑖 , 𝑖 = 0, 𝐼} is grammar G schema (set of names of

complexes of products, each complex 𝑟𝑖 consists of a subset 𝑃𝑖𝑗 of products 𝑟𝑖 =

 {P𝑖𝑗 , j = 1, 𝐽}); T ϵ {𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛} is a set of time stamps; 𝑟0 𝜖 𝑅 is RV-axiom gram-

mar.

Graphical objects containing more than one input or output are loaded with transla-

tion functions from the set to ensure that the inputs and outputs of such objects match

the base and target languages. Assignment of translation functions and operations per-

formed by them.

4

1. generate_input() is a formation of a set of input connection points, except for the one

on which this graphic object was reached. It is performed in the primary analysis of

graphical objects containing more than one input.

2. generate_output() is a formation of a set of outgoing connection points. It is per-

formed in the primary analysis of graphical objects containing more than one output,

or when the only output is supposed to be used as a link – label, i.e. it is necessary

to change the direction of analysis.

3. select_output() is a select the outgoing connection point of the element as the con-

tinuer of the target language chain. An event function that is executed for graphical

circuits with a dynamically changing number of outgoing connection points after the

formation of a set of connection points for outgoing connections, it is selected from

such points. In General, the selection algorithm is not regulated, i.e. the choice is

random.

4. stick_connection_points() is a link connection points and object. An event function

that is performed when secondary graphical objects that contain more than one input

are analyzed. Binds the incoming link to the connection point of the object, infor-

mation about which is stored in the internal memory.

The presence of these functions allows you to create an algorithm for building the out-

put chain, the main operations in which are the selection of the point – continuer anal-

ysis for objects containing more than one output, and the layout of a complete sequence

of already analyzed objects containing more than one input, and associated with them

analyzed objects. The order of application of functions is shown in Fig. 1.
Begin

Yes

Secondary
Analisys

End

Primary
Analysis?

No Yes

More than one
entry?

generate_input()

Yes

No

More than one
output?

generate_output()

Yes

No

More than one
entry?

stick_connection_points()

Yes

No

Are there several
successors?

select_output()

Yes

Is there
a point

successor?

Go to the point
successor

YesNo

Fig. 1. The main algorithm of translation.

For Fig. 2 all possible display options are presented. Table 1 describes the correspond-

ing types of the choice of the successor and the application of f function. On the maps

5

(see Fig. 2) hollow points show the guide points, shaded – the points through which the

analyzer reaches the graphical object, and filled with points – all other incoming and

outgoing points. In the following tables, the encoding of translation functions is ac-

cepted. The value fgi in the table cells corresponds to the function call generate_input(),

fgo is a generate_output(), fso is a select_output(), fscp is a stick_connection_point().

a b c d

e f g h

Fig. 2. Possible display types.

Table 1. A description of the possible representation types.

Representation description
Translating

functions
Succesors

with one directional output

(Fig. 2, a)
no directed output

With one input (Fig. 2, b) no
no, selected from the num-

ber of label links

with one input and several non-

directional outputs (Fig. 2, c)

fgo is a selects all

outputs

fso or selected from the

number of label links

with one input and several out-

puts, including the directional

(Fig. 2, d)

fgo is a selects all

outputs except di-

rectional

directed output

with multiple inputs and one

non-directional output (Fig. 2, e)

fgi, fgo are selects

all outputs

no, selected from the num-

ber of label links

with multiple inputs and one di-

rectional output (Fig. 2, f)
fgi directed output

with multiple inputs and multi-

ple non-directional outputs (Fig. 2,

g)

fgi, fgo are selects

all outputs

fso or selected from the

number of label links

with multiple inputs and multi-

ple outputs, including directional

(Fig. 2, h)

fgi, fgo are selects

all outputs except

directional

directed output

5 Example RVTITg-grammar for basic BPMN

The base language from which the broadcast will be produced is a well-known BPMN.

A standard Business Process Model and Notation (BPMN) will provide businesses with

6

the capability of understanding their internal business procedures in a graphical nota-

tion and will give organizations the ability to communicate these procedures in a stand-

ard manner [4]. The BPMN specification also provides a mapping between the graphics

of the notation and the underlying constructs of execution languages, particularly Busi-

ness Process Execution Language (BPEL) [4]. As a translation language, a timed Petri

net was chosen. Representation in terms of the timed Petri network for the language

elements of the BPMN presented in Table 2.

Table 2. Representation in terms of the timed Petri network for the language elements of the

BPMN.

 Element name BPMN representation Timed Petri nets representation

A Start event

a0

B End event

 ak

C Action

D Exclusive gateway

EG

E Parallel gateway

F Intermediate event “Timer”

H Link flow

Final tabular form RVTg-grammar for the languages BPMN and timed Petri nets are

presented in Table 3.

7

Table 3. Translation grammar example.

N State
Quasi

term
Next state

Operation with memory

Base language Target language

1 r0 A0 r1 Ø Ø

2 r1 rel r3 Ø Ø

3 r2 labelEG r3 W2(b1m, bt(6)) W2(b3m)

4 labelPG r3 W2(b2m, bt(6)) W2(b4m)

5 r3 Ai r1 Ø Ø

6 Aim r1 Ø Ø

7 Ait r1 W1(ts
t(6)) Ø

8 Akl r2 Ø /W3(!e1m, !e2m) Ø /W3(!e3m, !e4m)

9 Ak r4 Ø Ø

10 A r1 W1(ts
t(6)) Ø

11 Ait r3 W1(ts
t(6)) Ø

12 EGc r1 W1(𝑡1𝑚(𝑛−1)
)/W3(k = 1) W1(𝑡3𝑚(𝑛−1)

)/W3(k = 1)

13 EG r2 W1(1t(1), kt(2))/W3(et(2), k != 1) W1(1t(7), kt(8))/W3(et(8), k != 1)

14 _EG r2 W1(inc(mt(1))/W3(mt(1) < kt(2)) W1(inc(mt(7))/W3(mt(7) < kt(8))

15 _EGe r1
W1(𝑡1𝑚(𝑛−1)

)/W3(mt(1)=kt(2), p

!= 1)

W1(𝑡3𝑚(𝑛−1)
)/W3(mt(7)=kt(8), p

!= 1)

16 _EGme r1 o/W3(mt(1)=kt(2), p = 1) o/W3(mt(7)=kt(8), p = 1)

17 PGf r1 W1(𝑡2𝑚(𝑛−1)
)/W3(k = 1) W1(𝑡4𝑚(𝑛−1)

)/W3(k = 1)

18 PG r2 W1(1t(3), kt(4))/W3(et(3), k != 1)
W1(1t(9), kt(10))/W3(et(9), k !=

1)

19 _PG r2 W1(inc(mt(3))/W3(mt(3) < kt(4)) W1(inc(mt(9))/W3(mt(9) < kt(10))

20 _PGe r1
W1(𝑡2𝑚(𝑛−1)

)/W3(mt(3)=kt(4), p

!= 1)

W1(𝑡4𝑚(𝑛−1)
)/W3(mt(9)=kt(10),

p != 1)

21 _PGje r1
W1(𝑡2𝑚(𝑛−1)

)/W3(mt(3)=kt(4), p

= 1)

W1(𝑡4𝑚(𝑛−1)
)/W3(mt(9)=kt(10),

p = 1)

22 r4 no_label r5 * *

23 r5

When the analysis is complete, the stores in the internal memory of the target language

must be empty and all tape cells must contain the “0” character. Checking the memory

status is described by the operation indicated by the “” symbol. Take an example of an

abstract diagram in BPMN. It is depicted in the Fig. 3.

8

A1

Ait

A2

A3

2 hours

Ak

X

1 hour 1 hour

1 hour

5 hours

Fig. 3. Temporal BPMN diagram example.

Representation of temporal BPMN diagram example in timed Petri nets presented in Fig. 4.

A1

A3 (time = 2)A2 (time = 1)

t2 (time < 5)

t1

t3 (time >= 5)

t5

t7

rel

t4

t6

rel

rel rel

It

Fig. 4. Representation of temporal BPMN diagram example in timed Petri nets.

Conclusions

Presented RVTITg-grammar based on RVTI-grammar, which takes into account the

temporal characteristics and broadcast diagrammatically models in different graphical

languages. An example of the translation of BPMN diagrams into a timed Petri net.

Further directions of work are the expansion of the possibilities of semantic analysis of

diagrammatic models from the point of view of coordinating text attributes of diagrams

with project documentation.

9

Acknowledgment

The reported study was funded by RFBR according to the research project № 17-07-

01417 and Russian Foundation for Basic Research and the government of the region of

the Russian Federation, grant № 18-47-730032.

References

1. Booch, G., Jacobson, I., Rumbaugh, J.: The Unified Modeling Language User Guide. Addi-

son-Wesley (1998).

2. Mayer, R. J., Painter, M. K., de Witte, P. S.: IDEF family of methods for concurrent engi-

neering and business re-engineering applications. College Station, Tex, USA: Knowledge

Based Systems (1994).

3. Santos, P. S., Almeida, J. P. A., Pianissolla, T. L.: Uncovering the organisational modelling

and business process modelling languages in the ARIS method. International Journal of

Business Process Integration and Management, 5(2), 130-143 (2011).

4. Model, B. P. Notation (BPMN), v. 2.0, 2011. OMG, www.omg.org/spec/BPMN/2.0, last

accessed 2018/09/01.

5. Van Der Aalst, W., Van Hee, K. M., van Hee, K.: Workflow management: models, methods,

and systems. MIT press (2004).

6. Sharov, O., Afanasyev, A.: Syntax error recovery in graphical languages. Programming and

Computer Software 34, 44-48 (2008). doi: 10.1134/S0361768808010052

7. Afanasyev, A. N., Voit, N. N., Kirillov, S. Y.: Development of RYT-grammar for analysis

and control dynamic workflows. International Conference on Computing Networking and

Informatics (ICCNI), pp. 1-4. Lagos (2017). doi: 10.1109/ICCNI.2017.8123797

8. Zur Muehlen, M.: Workflow-based process controlling: foundation, design, and application

of workflow-driven process information systems. vol. 6. Michael zur Muehlen (2004).

9. Becker, J., Rosemann, M., Von Uthmann, C.: Guidelines of business process modeling.

Business Process Management. Springer, Berlin, Heidelberg, pp. 30-49 (2000).

10. Maurer, P.M.: The design and implementation of a grammar-based data generator. Software:

Practice and Experience, vol. 22, no. 3, pp. 223–244 (1992).

11. Reijers, H. A.: Design and control of workflow processes: business process management for

the service industry. Springer-Verlag (2003).

12. Poizat, P., Salaün, G., Krishna, A.: Checking business process evolution. In International

Workshop on Formal Aspects of Component Software, pp. 36-53. Springer, Cham (2016),

https://hal.inria.fr/hal-01366641, last accessed 2018/09/01.

13. Martens, A.: Analyzing web service based business processes. In International Conference

on Fundamental Approaches to Software Engineering, pp. 19-33. Springer, Berlin, Heidel-

berg (2005). doi: 10.1007/978-3-540-31984-9_3

14. Raedts, I., Petkovic, M., Usenko, Y. S., van der Werf, J. M. E., Groote, J. F., Somers, L. J.:

Transformation of BPMN Models for Behaviour Analysis. MSVVEIS, 2007, 126-137

(2007).

15. Dijkman, R. M., Dumas, M., & Ouyang, C.: Semantics and analysis of business process

models in BPMN. Information and Software technology, 50(12), 1281-1294 (2008). doi:

10.1016/j.infsof.2008.02.006

10

16. Wong, P. Y., & Gibbons, J.: A process semantics for BPMN. In International Conference

on Formal Engineering Methods, pp. 355-374. Springer, Berlin, Heidelberg (2008). doi:

10.1007/978-3-540-88194-0_22

17. Wong, P. Y., & Gibbons, J.: Verifying business process compatibility (short paper). In Qual-

ity Software, 2008. QSIC'08. The Eighth International Conference on, pp. 126-131. IEEE

(2008, August). doi: 10.1109/QSIC.2008.6

18. Decker, G., & Weske, M.: Interaction-centric modeling of process choreographies. Infor-

mation Systems, 36(2), 292-312 (2011). doi: 10.1016/j.is.2010.06.005

19. Decker, G., & Weske, M.: Local enforceability in interaction petri nets. In International

Conference on Business Process Management, pp. 305-319. Springer, Berlin, Heidelberg

(2007, September). doi: 10.1007/978-3-540-75183-0_22

20. Güdemann, M., Poizat, P., Salaün, G., & Dumont, A.: Verchor: A framework for verifying

choreographies. In International Conference on Fundamental Approaches to Software Engi-

neering, pp. 226-230. Springer, Berlin, Heidelberg (2013, March). doi: 10.1007/978-3-642-

37057-1_16

21. Mateescu, R., Salaün, G., & Ye, L.: Quantifying the parallelism in BPMN processes using

model checking. In Proceedings of the 17th international ACM Sigsoft symposium on Com-

ponent-based software engineering, pp. 159-168. ACM (2014, June). doi:

10.1145/2602458.2602473

22. Kossak, F., Illibauer, C., Geist, V., Kubovy, J., Natschläger, C., Ziebermayr, T., ... &

Schewe, K. D.: A Rigorous Semantics for BPMN 2.0 Process Diagrams. In A Rigorous

Semantics for BPMN 2.0 Process Diagrams, pp. 29-152. Springer, Cham (2014). doi:

10.1007/978-3-319-09931-6_4

23. Bultan, T., & Fu, X.: Specification of realizable service conversations using collaboration

diagrams. Service Oriented Computing and Applications, 2(1), 27-39 (2008). doi:

10.1109/SOCA.2007.41

24. Salaün, G., & Bultan, T.: Realizability of choreographies using process algebra encodings.

In International Conference on Integrated Formal Methods, pp. 167-182. Springer, Berlin,

Heidelberg (2009, February).

25. VBPMN Framework, https://pascalpoizat.github.io/vbpmn/, last accessed 2018/09/01.

26. Alur, R., Etessami, K., & Yannakakis, M.: Realizability and verification of MSC graphs.

Theoretical Computer Science: Automata, Languages and Programming, 331(1), 97 (2005).

doi: 10.1016/j.tcs.2004.09.034

27. Lotos, I. S. O.: A formal description technique based on the temporal ordering of observa-

tional behaviour. ISO8807, 1XS989 (1989).

28. Lohmann, N., & Wolf, K.: Realizability is controllability. In International Workshop on

Web Services and Formal Methods, pp. 110-127. Springer, Berlin, Heidelberg (2009, Sep-

tember). doi: 10.1007/978-3-642-14458-5_7

29. Poizat, P., & Salaün, G.: Checking the realizability of BPMN 2.0 choreographies. In Pro-

ceedings of the 27th Annual ACM Symposium on Applied Computing, pp. 1927-1934.

ACM (2012, March). doi: 10.1145/2245276.2232095

https://pascalpoizat.github.io/vbpmn/

