
1

DEVELOPMENT OF THE APPROACH TO CHECK THE

CORRECTNESS OF WORKFLOWS

ALEXANDER AFANASYEV, NIKOLAY VOIT, MARIA UKHANOVA,

IRINA IONOVA

Ulyanovsk State Technical University, 32, Severny Venetz str.

Ulyanovsk, 432027, Russia

The paper deals with an interesting approach for checking business process workflows.

Business processes workflows are presented as a diagram based on graphical languages

such as eEPC, UML, BPMN, IDEF0, and etc. We offer the approach based on a temporal

grammar, a timed automaton and an ontology. It allows narrowing the semantic gap

between business process analysis and business process execution. We propose to check

the structural and semantic errors. Semantic errors are checked by the ontological model.

The proposed approach can detect 23 errors, and the results are provided in visual form.

The approach is illustrated by an example.

1. Introduction

Workflow is a trace for executing a set of business process tasks, taking into

account time constraints and data flows. It is necessary to identify and correct

errors in the processes in order to avoid failures. Although errors can occur in

cause-effect relationships among tasks, we focus on the workflow execution’s

semantic errors, especially on denotative and significative semantics. Denotative

semantics determines the errors of antonymy, words’ synonymy in the workflow’s

business events. Significative semantics reveals workflow structural errors on the

basis of trace isomorphism and homomorphism. Ad-hoc is an add-on in the

workflow and makes the process not so strict, thereby it violates the canonical

rules of the process. Such a workflow execution can lead to a customer’s

satisfaction decrease, an employee overload increase, a brand image decrease, a

profits decrease, and a significant management time expenditure. Thus, it is

important for business to identify and correct semantic errors in workflows.

2

The workflow should be conceptually presented in the formal language for

analysis and expertise before deployment into a real business environment. This

view is also useful when transferring workflow tasks between designers, users,

process engineers, managers and technical personnel. In addition, process models

in the presentation can be tested by approaches that have a corresponding formal

language to determine a workflow. Conceptual representations can be performed

using Workflow Nets (WF-nets), Workflow Graphs, Object Coordination Nets

(OCoNs), Adjacency Matrix, Unified Modeling Language (UML) diagrams,

Evolution Workflow Approach and Propositional Logic. Today test algorithms

exist for WF-nets, Workflow Graphs, UML diagrams, Propositional Logic and

Adjacency Matrix representations. And popular algorithms are those that are

based on WF-nets and Workflow Graphs. WF-nets are based on Petri nets, and

many formal methods for analyzing Petri nets are used to obtain theoretical

solutions for problems encountered in the design of WF networks. Although many

complicated structures of process language that are useful in a business

environment can be implemented via WF-nets, the Workflow Management

Council (WfMC) uses only six basic structures of process language. WfMC has

adopted this approach to keep the simulation very simple and clear.

For a business event, a subset of workflow tasks is performed in accordance

with the object data (customer data, environment data, business process data, and

business domain data), for example, such as ordering. This subset of tasks,

together with the workflow used to execute the business process, is called an

instance. Until now, most workflow management systems (WfMSs) provide only

modeling tools for testing workflow models via a trial and error method [1]. These

modeling tools can be used to perform a subset of workflow instances to check

for structural conflicts that may occur in the respective scenarios. However,

workflows can have many instances, and the verification task becomes difficult

for all instances.

Check for structural and semantic errors in workflows is a computational

task, so different formal approaches and languages can be used for this. However,

the approach taken for verification should support the language of the workflow

description. Because of the computational complexity of a task (polynomial,

exponential), only a few approaches successfully cope with the verification of

workflows, taking into account constraints, including time constraints, for all

types of workflow graphs.

The paper has the following structure. The list of standard problems with

workflows is given in Introduction. The Related works paragraph has an overview

3

of works on this topic. In Temporal grammar, Timed automaton, Ontology and

List of errors, we describe the approach. In Elaborate example, the

Implementation presents our proposed approach. Results and the further

directions of researches are in Conclusion.

2. Related works

We have studied many research works considered with the workflows’

specification, verification and translation. Some of them focus on formal

semantics and workflows verification methods using Petri nets, process algebra,

and abstract state machine [5], [6]. Decker and Weske offer a formalism based on

Petri Nets to define such properties as reliability and promptness, and a method

for testing these two properties. However, they only describe the synchronous

relationship and do not have any research comparisons for high-level interaction

modeling languages as BPMN. Lohmann and Wolff offer the analysis using

existing templates and monitoring them using compatible templates. In [3], the

authors draw attention to the translation of BPMN into the process algebra for

analyzing choreographies using the help model and checking equivalence. The

Woflan tool was developed by H.W.M. Verbeek and W.M.P. Van der Aalst for

checking structural conflict errors in WF-nets. The Woflan tool can also be used

to test inheritance.

The main limit of the methods considered is that they do not work in different

types of diagrams at the same time; it means that the input diagrams cannot be

analyzed in some cases.

3. Temporal grammar

Temporal grammar (RVT-grammar) is defined as the tuple

 𝐺 = (𝑉, Σ, Σ
~

, 𝐶, 𝐸, 𝑅, 𝜏, 𝑟0). (1)

where 𝑉 = {𝜈𝑒 , 𝑒 = 1. 𝐿} is an additional alphabet for the operation onto a

memory;  = {(𝑎𝑙 , 𝑡𝑙), 𝑙 = 1. 𝑇̅̅ ̅̅ ̅} is an alphabet (words) of events; Σ̃ = {(𝑎̃𝑛, 𝑡̃𝑛),
𝑛 = 1. 𝑇̃̅̅ ̅̅ } is a quasi-term alphabet, extending Σ; 𝐶 = {𝑐𝑖 , 𝑐𝑖 = 𝑐𝑖 + 𝑡𝑙−1, 𝑖 ∈ 𝑁}

is a set of a time identifier, and a beginning 𝑐𝑖 = 0; 𝐸 is a set of the temporal

relations as {𝑐𝑖~𝑡𝑙}, where c is a variable (a time identifier), ~ ∈ {=,<,≤,>,≥

}; 𝑅 = {𝑟𝑖 , 𝑖 = 0. 𝐼} is a rule of this grammar 𝐺 (a set of production rule’s

complexes), where this complex 𝑟𝑖 has a subset 𝑃𝑖𝑗 of the production rule 𝑟𝑖 =

{𝑃𝑖𝑗 , 𝑗 = 1. 𝐽}; 𝜏 = {𝑡𝑙 ∈ [0;+∞], 𝑙 = 1. 𝑇̅̅ ̅̅ ̅} is a set of timestamps, where 𝑐𝑖 ∈

4

𝜏 × ~ × 𝜏; 𝑟0 ∈ 𝑅 is an axiom of this grammar (a name of the first production

rule), 𝑟𝑘 ∈ 𝑅 is the last production rule. The production rule 𝑃𝑖𝑗 ∈ 𝑟𝑖 has a view

as

 (𝑎𝑙 , 𝑡𝑙)
{𝑊𝛾(𝜈1, … , 𝜈𝑛)|𝐸}
→ 𝑟𝑚. (2)

where 𝑊𝛾(𝜈1, … , 𝜈𝑛) is n-relation, that defines a type of an operation over

memory, depending on 𝛾 = {0,1,2,3} (0 – operation is not performed, 1 – write,

2 – read, 3 – compare); (𝑎𝑙 , 𝑡𝑙) is a word as a pair of an event and a timestamp;

𝑟𝑚 ∈ 𝑅 is a name of a target production rule. The language 𝐿(𝐺) of this grammar

has words as (𝑎𝑙 , 𝑡𝑙) and presents a trace 𝜎 = {𝑎0, 0} → {𝑎𝑙 , 𝑡𝑙} → {𝑎𝑘 , 𝑡𝑇}.

4. Timed automaton

The timed automaton TimedAutomaton is represented by following components:

𝑇𝑖𝑚𝑒𝑑𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑜𝑛 = (𝑉, ∑, 𝐶, 𝐸, 𝛿, 𝑆0, 𝑆, 𝑆𝑘) ()

where 𝑉 = {𝜈𝑒 , 𝑒 = 1. 𝐻} is an auxiliary alphabet (the alphabet of operations

over internal memory); ∑ = {(𝑎𝑙 , 𝑡𝑙), 𝑙 = 1. 𝐿} is a terminal alphabet of a

language; 𝐶 = {𝑐𝑖 , 𝑐𝑖 = 𝑐𝑖 + 𝑡𝑙−1, 𝑖 ∈ 𝑁} is a finite set of clock identifiers, and a

beginning 𝑐𝑖 = 0; 𝐸 − is a set of time expressions C (clock limitation and clock

reset), is limited by the following expressions: onwards {𝑐𝑖~𝑡𝑙}, and 𝑐𝑖 is a

variable, and 𝑡𝑙 is a constant, ~ ∈ {=,<,≤,>,≥}; 𝑆 = {𝑆𝑖 , 𝑖 = 0. 𝐼} is a set of

states; 𝑆0 ∈ 𝑆 is a beginning state; 𝑆𝑘 ∈ 𝑆 is a ending state; the state transition

function of automaton δ: 𝑆𝑖 × (𝑎𝑙 , 𝑡𝑙)
{𝑊𝛾(𝜈1, … , 𝜈𝑛)|𝐸}
→ 𝑆𝑚 is the ratio of

transitions, where 𝑊𝛾(𝜈1, … , 𝜈𝑛) is a n-th relation, which determines the type of

operation over the internal memory depending on 𝛾 ∈ {0,1,2,3} (respectively,

0 – operation is not performed, 1 – record, 2 – read, 3 – compare); 𝜈1, … , 𝜈𝑛 ∈
𝑉; 𝑟𝑖 ∈ 𝑅 is the name of the complex of a production rule’s source; 𝑆𝑚 ∈ 𝑆 is the

name of the state of a production rule’s successor.

5. Ontology

The ontology is presented as follows:

 𝑂 = (𝐶𝑙𝑎𝑠𝑠, 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦, 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝐴𝑥𝑖𝑜𝑚). (4)

where 𝐶𝑙𝑎𝑠𝑠 is a set of concepts (classes) defined for a particular subject domain;

𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 is a set of concept properties; 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 is a set of semantic links

5

defined among concepts in 𝐶𝑙𝑎𝑠𝑠. A set of relation types is the following: one to

one, one to many and many to many. A set of basic relations is presented by:

synonymy, a kind of something, part of something (f), instance of something,

property of something (property of); 𝐴𝑥𝑖𝑜𝑚 is a set of axioms. An axiom is a real

fact or a rule that determines the cause-effect relationship.

6. List of errors

We can detect the following errors: 1. The cyclic link; 2. Mutually exclusive links;

3. Multiple links; 4. Remote context error; 5. Control transfer failure; 6. Input

multiplicity error; 7. Output multiplicity error; 8. Invalid link; 9. Link error; 10.

Access level error; 11. Message transmission error; 12. Control Transfer Error;

13. A quantitative error of diagram’s elements; 14. Excluding links of a wrong

type; 15. A call directed to the life line; 16. Dead link; 17. Dependency

multiplicity violation; 18. Mutually exclusive links; 19. A synchronous call until

a response; 20. Great synonymy; 21. Objects’ antonymy; 22. Conversion of

relationships; 23. Inconsistency of objects.

7. Elaborate example

Business processes as workflows are presented as a diagram based on graphical

languages such as eEPC, UML, BPMN, IDEF0 using software of IBM,

Whitestien Technologies, ARIS, OMG, etc.

The temporal property of this design process (workflow) is very important

for designing and manufacturing, especially if we can manage time limits of

production. The ARIS eEPC methodology gives all temporal properties of a

design process as against UML, IDEF0, BPMN. Events and Functions are the

main object in this methodology. Therefore, Events are represented by moments,

and Functions are represented by decision-making processes. Events have a

Frequency folder with attributes as the frequency of an event. Functions have a

Simulation folder with attributes as a time period for making decision. The logical

operations as AND, OR, XOR are control functions of workflows in this

methodology.

6

Let’s take a look at Figure 1 where it is described a sample of an approval

process of design documentations. It usually takes three days to approve a design

documentation for an assembly. This process consists of the Begin, Processing,

Checking, Improve, Approval, End phases which are described on the basis of

eEPC methodology.

Figure 1. The approval of a design documentation based on eEPC methodology.

The Processing time attribute is presented in the above-mentioned folders

(the sum of them is 3). The Orientation time attribute is presented in the Begin

and End folders. We have developed a mathematical tool in order to analyze the

temporal property of workflows by the temporal grammar. This tool helps us to

dynamically reorganize parallel workflows for automated systems’ lifecycle in a

large enterprise. The goal is to reduce the idle time in manufacturing and time

spent on an assembly.

Let’s write grammar for Figure 1. The one automated store m and the one tape

1t are used by this grammar as the internal memory. The timestamp tm is recorded

on a tape. In Table 1, we can see the written RVT-grammar for Figure 1.
Table 1. RVT-grammar for Figure 1.

Source production

rule’s complex

Quasi-term Target production

rule’s complex

Relation

r0 B r1 W1(1
1m), W1(tm

1t)

r1 W r2 W1(2
1m)/W3(c<=tm1t)

r2 C r3 W1(3
1m)/W3(c>tm1t)

r2 C r4 W3(c<=tm1t)

r3 I r4 c=0, W2(3
1m)/W3(c<=tm1t)

r4 A r3 W2(3
1m)/W3(c>tm1t)

r
4
 A r

k
 W2(2

1m), W2(1
1m)

rk E – –

Let’s write a timed automaton for RVT-grammar. The alphabet of an event

process is a set of ∑= {Begin, Processing, Checking, Improve, Approval, End}.

S = {B,W, C, I, A, E}. Let’s define the state transition function of automaton δ

that has been formulated in a section Timed automaton (Table 2).

Begin

Orientation time

= 11.11.2017

Initial workflows

for creating

design

documentations

(DD)

Processing time =

0,5

processing Checking

Improving

Approval

Creating DD

Processing time

=1

Checking DD

Processing time

= 1

Approval

Processing time = 0,5

⋁

⋁

End

Orientation time

= 14.11.2017

7

Table 2. A matrix of the state transition function of automaton δ.

Constraint B W C I A E

B W1(1
1m),

W1(tm
1t)

W W1(2
1m)/

W3(c<=tm1t)

C W1(3
1m)/

 W3(c>tm1t)

W3(c<=tm1t)

I c=0, W2(3
1m)/

W3(c<=tm1t)

A W1(3
1m)/

W3(c>tm1t)
 W2(2

1m),
W2(1

1m)

E

Let’s depict an ontology for this timed automaton. We transform the

automaton into an ontology, replacing the States with Classes, adding properties

to the notions (Property). We get a graphical representation of the ontology with

class properties (Figure 2).

Figure 2. The ontology for Figure 1.

8. Discussion

In Figure 2, we see that Class W and I have the Creating property, so you can say

that the properties of these classes are synonymous and you need to establish a

synonymy relationship among these classes. Also, classes B and E are antonyms,

so an antonymy relationship can be established between them. Thus, it is possible

to structure an ontology and identify semantic errors, including isomorphism and

homomorphism, according to List of errors.

Conclusion and future works

We have developed an approach in order to analyze errors according to the list of

errors in business processes workflows. This research work is different from

existing ones in the fact that it has checked not only structural errors but also

semantic errors. The proposed temporal finite-state grammar has a linear

characteristic of time analysis of a workflow, takes into account the process

description language and can be applied to any diagram. A timed automaton

W B C

B
E A I

W1(11m), W1(tm1t) W
1
(2

1m
)/W

3
(c<=tm

1t
) W

1
(3

1m
)/W

3
(c>tm

1t
) c=0,W

2
(3

1m
)/W

3
(c<=tm

1t
) W

2
(2

1m
), W

2
(tm

1t
)

W
3
(c<=tm

1t
)

W
1
(3

1m
)/W

3
(c>tm

1t
)

Initial Creating

Checking

Creating

Approval
End

8

allows modeling a process in visual form. Analysis for denotative and

significative errors in workflows is based on the ontological model. We developed

a list of structural and semantic errors encountered in workflows.

Our future works will present examples of the approach application in

industry, training, cyber-physical systems, in the development of automated

systems.

Acknowledgments

The reported study was funded by RFBR according to the research project № 17-

07-01417.

References

1. H. H. Bi, J. L. Zhao, Information Technology and Management, 5, 293

(2004).

2. P. Poizat, G. Salaün, Checking the Realizability of BPMN 2.0

Choreographies, in Proc. of SAC’12 (2012).

3. A. N. Afanasyev, N. N. Voit and S. Y. Kirillov, Development of RYT-

grammar for analysis and control dynamic workflows, in Proc. of

International Conference on Computing Networking and Informatics

(ICCNI), (Lagos, Nigeria, 2017). doi: 10.1109/ICCNI.2017.8123797, URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8123797&isnum

ber=8123766.

4. A. Afanasyev, N. Voit, R. Gainullin, The analysis of diagrammatic models

of workflows in design of the complex automated systems, in Proc. of

International conference on Fuzzy Logic and Intelligent Technologies in

Nuclear Science (FLINS2016), (France, Roubaix, 2016).

5. Y. Wang, Y. Fan, Using Temporal Logics for Modeling and Analysis of

Workflows, in Proc. of E-Commerce Technology for Dynamic E-Business,

IEEE International Conference on. doi: 10.1109/CEC-EAST.2004.72

(2004).

6. N. Saeedloei and G. Gupta, Timed definite clause ω-grammars, In Proc. of/

Technical Communications of the International Conference on Logic

Programming (2010). URL: http://www.floc-conference.org/ICLP-

home.html

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8123797&isnumber=8123766
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8123797&isnumber=8123766

