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The paper deals with an interesting approach for checking business process workflows. 

Business processes workflows are presented as a diagram based on graphical languages 

such as eEPC, UML, BPMN, IDEF0, and etc. We offer the approach based on a temporal 

grammar, a timed automaton and an ontology. It allows narrowing the semantic gap 

between business process analysis and business process execution. We propose to check 

the structural and semantic errors. Semantic errors are checked by the ontological model. 

The proposed approach can detect 23 errors, and the results are provided in visual form. 

The approach is illustrated by an example. 

1.   Introduction 

Workflow is a trace for executing a set of business process tasks, taking into 

account time constraints and data flows. It is necessary to identify and correct 

errors in the processes in order to avoid failures. Although errors can occur in 

cause-effect relationships among tasks, we focus on the workflow execution’s 

semantic errors, especially on denotative and significative semantics. Denotative 

semantics determines the errors of antonymy, words’ synonymy in the workflow’s 

business events. Significative semantics reveals workflow structural errors on the 

basis of trace isomorphism and homomorphism. Ad-hoc is an add-on in the 

workflow and makes the process not so strict, thereby it violates the canonical 

rules of the process. Such a workflow execution can lead to a customer’s 

satisfaction decrease, an employee overload increase, a brand image decrease, a 

profits decrease, and a significant management time expenditure. Thus, it is 

important for business to identify and correct semantic errors in workflows. 
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The workflow should be conceptually presented in the formal language for 

analysis and expertise before deployment into a real business environment. This 

view is also useful when transferring workflow tasks between designers, users, 

process engineers, managers and technical personnel. In addition, process models 

in the presentation can be tested by approaches that have a corresponding formal 

language to determine a workflow. Conceptual representations can be performed 

using Workflow Nets (WF-nets), Workflow Graphs, Object Coordination Nets 

(OCoNs), Adjacency Matrix, Unified Modeling Language (UML) diagrams, 

Evolution Workflow Approach and Propositional Logic. Today test algorithms 

exist for WF-nets, Workflow Graphs, UML diagrams, Propositional Logic and 

Adjacency Matrix representations. And popular algorithms are those that are 

based on WF-nets and Workflow Graphs. WF-nets are based on Petri nets, and 

many formal methods for analyzing Petri nets are used to obtain theoretical 

solutions for problems encountered in the design of WF networks. Although many 

complicated structures of process language that are useful in a business 

environment can be implemented via WF-nets, the Workflow Management 

Council (WfMC) uses only six basic structures of process language. WfMC has 

adopted this approach to keep the simulation very simple and clear. 

For a business event, a subset of workflow tasks is performed in accordance 

with the object data (customer data, environment data, business process data, and 

business domain data), for example, such as ordering. This subset of tasks, 

together with the workflow used to execute the business process, is called an 

instance. Until now, most workflow management systems (WfMSs) provide only 

modeling tools for testing workflow models via a trial and error method [1]. These 

modeling tools can be used to perform a subset of workflow instances to check 

for structural conflicts that may occur in the respective scenarios. However, 

workflows can have many instances, and the verification task becomes difficult 

for all instances. 

Check for structural and semantic errors in workflows is a computational 

task, so different formal approaches and languages can be used for this. However, 

the approach taken for verification should support the language of the workflow 

description. Because of the computational complexity of a task (polynomial, 

exponential), only a few approaches successfully cope with the verification of 

workflows, taking into account constraints, including time constraints, for all 

types of workflow graphs. 

The paper has the following structure. The list of standard problems with 

workflows is given in Introduction. The Related works paragraph has an overview 
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of works on this topic. In Temporal grammar, Timed automaton, Ontology and 

List of errors, we describe the approach. In Elaborate example, the 

Implementation presents our proposed approach. Results and the further 

directions of researches are in Conclusion. 

2.   Related works 

We have studied many research works considered with the workflows’ 

specification, verification and translation. Some of them focus on formal 

semantics and workflows verification methods using Petri nets, process algebra, 

and abstract state machine [5], [6]. Decker and Weske offer a formalism based on 

Petri Nets to define such properties as reliability and promptness, and a method 

for testing these two properties. However, they only describe the synchronous 

relationship and do not have any research comparisons for high-level interaction 

modeling languages as BPMN. Lohmann and Wolff offer the analysis using 

existing templates and monitoring them using compatible templates. In [3], the 

authors draw attention to the translation of BPMN into the process algebra for 

analyzing choreographies using the help model and checking equivalence. The 

Woflan tool was developed by H.W.M. Verbeek and W.M.P. Van der Aalst for 

checking structural conflict errors in WF-nets. The Woflan tool can also be used 

to test inheritance. 

The main limit of the methods considered is that they do not work in different 

types of diagrams at the same time; it means that the input diagrams cannot be 

analyzed in some cases. 

3.   Temporal grammar 

Temporal grammar (RVT-grammar) is defined as the tuple  

                                             𝐺 = (𝑉, Σ, Σ
~

, 𝐶, 𝐸, 𝑅, 𝜏, 𝑟0).                                       (1) 

where 𝑉 = {𝜈𝑒 , 𝑒  =   1. 𝐿} is an additional alphabet for the operation onto a 

memory;  = {(𝑎𝑙 , 𝑡𝑙), 𝑙 = 1. 𝑇̅̅ ̅̅ ̅} is an alphabet (words) of events; Σ̃ = {(𝑎̃𝑛, 𝑡̃𝑛),
𝑛  =   1. 𝑇̃̅̅ ̅̅ } is a quasi-term alphabet, extending Σ; 𝐶 = {𝑐𝑖 , 𝑐𝑖 = 𝑐𝑖 + 𝑡𝑙−1, 𝑖 ∈ 𝑁} 

is a set of a time identifier, and a beginning 𝑐𝑖 = 0; 𝐸 is a set of the temporal 

relations as {𝑐𝑖~𝑡𝑙}, where c is a variable (a time identifier), ~ ∈ {=,<,≤,>,≥

}; 𝑅 = {𝑟𝑖 , 𝑖  =   0. 𝐼} is a rule of this grammar 𝐺 (a set of production rule’s 

complexes), where this complex  𝑟𝑖 has a subset 𝑃𝑖𝑗  of the production rule 𝑟𝑖  =

{𝑃𝑖𝑗 , 𝑗 =  1. 𝐽}; 𝜏 = {𝑡𝑙 ∈ [0;+∞], 𝑙 = 1. 𝑇̅̅ ̅̅ ̅} is a set of timestamps, where 𝑐𝑖 ∈



 

 

 

4 

𝜏 × ~ × 𝜏; 𝑟0 ∈ 𝑅 is an axiom of this grammar (a name of the first production 

rule), 𝑟𝑘 ∈ 𝑅 is the last production rule. The production rule 𝑃𝑖𝑗 ∈ 𝑟𝑖  has a view 

as  

                                                        (𝑎𝑙 , 𝑡𝑙)
{𝑊𝛾(𝜈1, … , 𝜈𝑛)|𝐸}
→                 𝑟𝑚.                          (2) 

where 𝑊𝛾(𝜈1, … , 𝜈𝑛) is n-relation, that defines a type of an operation over 

memory, depending on 𝛾 = {0,1,2,3} (0 – operation is not performed, 1 – write, 

2 – read, 3 – compare); (𝑎𝑙 , 𝑡𝑙) is a word as a pair of an event and a timestamp; 

𝑟𝑚 ∈ 𝑅 is a name of a target production rule. The language 𝐿(𝐺) of this grammar 

has words as (𝑎𝑙 , 𝑡𝑙) and presents a trace 𝜎 = {𝑎0, 0} → {𝑎𝑙 , 𝑡𝑙} → {𝑎𝑘 , 𝑡𝑇}. 

4.   Timed automaton 

The timed automaton TimedAutomaton is represented by following components: 

𝑇𝑖𝑚𝑒𝑑𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑜𝑛 =  (𝑉, ∑, 𝐶, 𝐸, 𝛿, 𝑆0, 𝑆, 𝑆𝑘)                           () 

where 𝑉 = {𝜈𝑒 , 𝑒  =   1. 𝐻} is  an auxiliary alphabet (the alphabet of operations 

over internal memory);  ∑ = {(𝑎𝑙 , 𝑡𝑙), 𝑙  = 1. 𝐿} is a terminal alphabet of a 

language; 𝐶 = {𝑐𝑖 , 𝑐𝑖 = 𝑐𝑖 + 𝑡𝑙−1, 𝑖 ∈ 𝑁} is a finite set of clock identifiers, and a 

beginning 𝑐𝑖 = 0; 𝐸 − is a set of time expressions C (clock limitation and clock 

reset), is limited by the following expressions: onwards {𝑐𝑖~𝑡𝑙}, and 𝑐𝑖 is a 

variable, and 𝑡𝑙 is a constant, ~ ∈ {=,<,≤,>,≥}; 𝑆 = {𝑆𝑖 , 𝑖  =   0. 𝐼} is a set of 

states; 𝑆0 ∈ 𝑆 is a beginning state; 𝑆𝑘 ∈ 𝑆 is a ending state;  the state transition 

function of automaton δ: 𝑆𝑖 × (𝑎𝑙 , 𝑡𝑙)
{𝑊𝛾(𝜈1, … , 𝜈𝑛)|𝐸}
→               𝑆𝑚 is the ratio of 

transitions, where 𝑊𝛾(𝜈1, … , 𝜈𝑛) is a n-th relation, which determines the type of 

operation over the internal memory depending on 𝛾  ∈   {0,1,2,3} (respectively, 

0 – operation is not performed, 1 – record, 2 – read, 3 – compare); 𝜈1, … , 𝜈𝑛 ∈
𝑉; 𝑟𝑖 ∈ 𝑅 is the name of the complex of a production rule’s source;  𝑆𝑚 ∈ 𝑆 is the 

name of the state of a production rule’s successor. 

5.   Ontology 

The ontology is presented as follows: 

                               𝑂 = (𝐶𝑙𝑎𝑠𝑠, 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦, 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝐴𝑥𝑖𝑜𝑚).                               (4) 

where 𝐶𝑙𝑎𝑠𝑠 is a set of concepts (classes) defined for a particular subject domain; 

𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 is a set of concept properties; 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 is a set of semantic links 
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defined among concepts in 𝐶𝑙𝑎𝑠𝑠. A set of relation types is the following: one to 

one, one to many and many to many. A set of basic relations is presented by: 

synonymy, a kind of something, part of something (f), instance of something, 

property of something (property of); 𝐴𝑥𝑖𝑜𝑚 is a set of axioms. An axiom is a real 

fact or a rule that determines the cause-effect relationship. 

6.   List of errors 

We can detect the following errors: 1. The cyclic link; 2. Mutually exclusive links; 

3. Multiple links; 4. Remote context error; 5. Control transfer failure; 6. Input 

multiplicity error; 7. Output multiplicity error; 8. Invalid link; 9. Link error; 10. 

Access level error; 11. Message transmission error; 12. Control Transfer Error; 

13. A quantitative error of diagram’s elements; 14. Excluding links of a wrong 

type; 15. A call directed to the life line; 16. Dead link; 17. Dependency 

multiplicity violation; 18. Mutually exclusive links; 19. A synchronous call until 

a response; 20. Great synonymy; 21. Objects’ antonymy; 22. Conversion of 

relationships; 23. Inconsistency of objects. 

7.   Elaborate example 

Business processes as workflows are presented as a diagram based on graphical 

languages such as eEPC, UML, BPMN, IDEF0 using software of IBM, 

Whitestien Technologies, ARIS, OMG, etc. 

The temporal property of this design process (workflow) is very important 

for designing and manufacturing, especially if we can manage time limits of 

production. The ARIS eEPC methodology gives all temporal properties of a 

design process as against UML, IDEF0, BPMN. Events and Functions are the 

main object in this methodology. Therefore, Events are represented by moments, 

and Functions are represented by decision-making processes. Events have a 

Frequency folder with attributes as the frequency of an event. Functions have a 

Simulation folder with attributes as a time period for making decision. The logical 

operations as AND, OR, XOR are control functions of workflows in this 

methodology. 
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Let’s take a look at Figure 1 where it is described a sample of an approval 

process of design documentations. It usually takes three days to approve a design 

documentation for an assembly. This process consists of the Begin, Processing, 

Checking, Improve, Approval, End phases which are described on the basis of 

eEPC methodology. 

Figure 1. The approval of a design documentation based on eEPC methodology. 

The Processing time attribute is presented in the above-mentioned folders 

(the sum of them is 3). The Orientation time attribute is presented in the Begin 

and End folders. We have developed a mathematical tool in order to analyze the 

temporal property of workflows by the temporal grammar. This tool helps us to 

dynamically reorganize parallel workflows for automated systems’ lifecycle in a 

large enterprise. The goal is to reduce the idle time in manufacturing and time 

spent on an assembly. 

Let’s write grammar for Figure 1. The one automated store m and the one tape 

1t are used by this grammar as the internal memory. The timestamp tm is recorded 

on a tape. In Table 1, we can see the written RVT-grammar for Figure 1. 
Table 1. RVT-grammar for Figure 1. 

Source production  

rule’s complex 

Quasi-term Target production  

rule’s complex 

Relation 

r0 B r1 W1(1
1m), W1(tm

1t) 

r1 W r2 W1(2
1m)/W3(c<=tm1t) 

r2 C r3 W1(3
1m)/W3(c>tm1t) 

r2 C r4 W3(c<=tm1t) 

r3 I r4 c=0, W2(3
1m)/W3(c<=tm1t) 

r4 A r3 W2(3
1m)/W3(c>tm1t) 

r
4
 A r

k
 W2(2

1m), W2(1
1m) 

rk E – – 

Let’s write a timed automaton for RVT-grammar. The alphabet of an event 

process is a set of ∑= {Begin, Processing, Checking, Improve, Approval, End}. 

S =  {B,W, C, I, A, E}. Let’s define  the state transition function of automaton δ 

that has been formulated in a section Timed automaton (Table 2).  

Begin 

Orientation time 

= 11.11.2017 

Initial workflows 

for creating 

design 

documentations 

(DD) 

Processing time = 

0,5 

 

processing Checking 

Improving 

Approval 

Creating DD 

Processing time 

=1 

 

Checking DD 

Processing time 

= 1 

 

Approval 

Processing time = 0,5 

 

⋁ 

⋁ 

End 

Orientation time 

= 14.11.2017 
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Table 2. A matrix of the state transition function of automaton δ. 

Constraint B W C I A E 

B  W1(1
1m), 

W1(tm
1t) 

    

W   W1(2
1m)/ 

W3(c<=tm1t) 

   

C    W1(3
1m)/ 

 W3(c>tm1t) 

W3(c<=tm1t)  

I     c=0, W2(3
1m)/ 

W3(c<=tm1t) 
 

A    W1(3
1m)/ 

W3(c>tm1t) 
 W2(2

1m), 
W2(1

1m) 

E       

Let’s depict an ontology for this timed automaton. We transform the 

automaton into an ontology, replacing the States with Classes, adding properties 

to the notions (Property). We get a graphical representation of the ontology with 

class properties (Figure 2). 

 
Figure 2. The ontology for Figure 1. 

8.   Discussion 

In Figure 2, we see that Class W and I have the Creating property, so you can say 

that the properties of these classes are synonymous and you need to establish a 

synonymy relationship among these classes. Also, classes B and E are antonyms, 

so an antonymy relationship can be established between them. Thus, it is possible 

to structure an ontology and identify semantic errors, including isomorphism and 

homomorphism, according to List of errors. 

Conclusion and future works 

We have developed an approach in order to analyze errors according to the list of 

errors in business processes workflows. This research work is different from 

existing ones in the fact that it has checked not only structural errors but also 

semantic errors. The proposed temporal finite-state grammar has a linear 

characteristic of time analysis of a workflow, takes into account the process 

description language and can be applied to any diagram. A timed automaton 

W B C

B 
E A I 

W1(11m), W1(tm1t) W
1
(2

1m
)/W

3
(c<=tm

1t
) W

1
(3

1m
)/W

3
(c>tm

1t
) c=0,W

2
(3

1m
)/W

3
(c<=tm

1t
) W

2
(2

1m
), W

2
(tm

1t
) 

W
3
(c<=tm

1t
) 

W
1
(3

1m
)/W

3
(c>tm

1t
) 

Initial Creating 

Checking 

Creating 

Approval 
End 
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allows modeling a process in visual form. Analysis for denotative and 

significative errors in workflows is based on the ontological model. We developed 

a list of structural and semantic errors encountered in workflows. 

Our future works will present examples of the approach application in 

industry, training, cyber-physical systems, in the development of automated 

systems. 
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